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Abstract—Cloud file systems offer organizations a scalable and
reliable file storage solution. However, cloud file systems have
become prime targets for adversaries, and traditional designs
are not equipped to protect organizations against the myriad
of attacks that may be initiated by a malicious cloud provider,
co-tenant, or end-client. Recently proposed designs leveraging
cryptographic techniques and trusted execution environments
(TEEs) still force organizations to make undesirable trade-offs,
consequently leading to either security, functional, or performance
limitations. In this paper, we introduce BFS, a cloud file system
that leverages the security capabilities provided by TEEs to
bootstrap new security protocols that deliver strong security
guarantees, high-performance, and a transparent POSIX-like
interface to clients. BFS delivers stronger security guarantees
and up to a 2.5⇥ speedup over a state-of-the-art secure file
system. Moreover, compared to the industry standard NFS, BFS
achieves up to 2.2⇥ speedups across micro-benchmarks and
incurs < 1⇥ overhead for most macro-benchmark workloads.
BFS demonstrates a holistic cloud file system design that does
not sacrifice an organizations’ security yet can embrace all of the
functional and performance advantages of outsourcing.

Index Terms—Trusted execution, file system security

I. INTRODUCTION

Cloud file systems are a backbone of modern cloud in-
frastructure. Often used as the storage interface for personal
cloud drives and enterprise server applications, they provide
convenient and reliable access to shared file data. While
advantageous for several reasons, storing file data in the cloud
raises significant security and privacy concerns [1].

Breaches of private user data and metadata, intellectual
property theft, and ransomware campaigns have been shown
to be particularly effective in cloud environments [2], [3], [4],
highlighting the need for better ways of protecting data stored
in the cloud. Further, adversaries in cloud environments include
not only co-tenants and end-clients, but even a malicious cloud
provider. More sophisticated defenses are required to mitigate
attacks initiated by a malicious cloud provider (e.g., host system
call tampering) [5], [6], [7], [8], [9]; these are commonly
denoted as host-interface attacks. Concretely, a trusted cloud
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file system must therefore provide: (1) confidentiality and
integrity protection for all file data and metadata, (2) resilience
against a variety of host-interface attacks, (3) support for
canonical features like file sharing and policy management,
and (4) practical performance.

Designing a cloud file system that simultaneously meets all
of these requirements is a challenging task. Widely-used cloud
file systems like Amazon’s EFS or Google’s Filestore [10], [11],
[12], [13] can deliver high-performance, but necessarily force
organizations to simply trust that neither the cloud provider,
nor any other privileged or unprivileged adversary, can or will
maliciously access or modify file data or metadata stored on
the remote hosts. And while recent efforts have leveraged
cryptographic techniques and trusted execution environments
(TEEs) to secure data, they still force organizations to make un-
desirable trade-offs and fail to deliver either sufficient security
controls, feature support, or performance guarantees [14], [15],
[16], [17], [18], [19], [20]. This has consequently prevented
these designs from seeing wide adoption as a primary storage
interface. Thus, the community lacks a suitable file system that
strikes a good balance between real-world security, functional,
and performance requirements.

In this paper, we introduce BFS, a cloud file system
that meets real-world security, functional, and performance
requirements. BFS leverages the security capabilities provided
by TEEs [21], [22], [23], [24] to bootstrap new security
protocols that grant four key properties: (1) confidentiality
and integrity protection for all file data and metadata; (2)
comprehensive protection against host-interface attacks; (3)
secure and high-performance file sharing; and (4) extensible
feature support. BFS demonstrates that organizations need not
sacrifice file system security to embrace the functional and
performance advantages of outsourcing.

Accomplishing this requires addressing a range of challenges
associated with request processing and data persistence. First,
protecting confidentiality and integrity requires designing novel
end-to-end protocols that can mitigate various known attacks
with minimal overhead. We address this through data &
metadata isolation, wherein we securely partition file system
tasks across trusted and untrusted components to efficiently
protect against tampering with data and metadata while in-
flight, in-processing, and at-rest. Second, protecting against
host-interface attacks requires a careful reconsideration of the
host-interface design to be able to reason about and mitigate
them. We address this through host-interface shielding, wherein
we design a simple, deterministic host-interface and develop
mechanisms to protect against tampering with host-interface
parameters or return codes. Lastly, providing secure and
high-performance file sharing and extensible feature support
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requires a reliable but versatile cryptographic key management
system that minimizes the risk of key compromise and has
minimal performance overhead. We address this by offloading
cryptographic work to the TEE, where the TEE serves as a
trusted key escrow that manages persistent encryption keys
and negotiates ephemeral keys with clients as needed.

Our evaluation of BFS examines the design trade-offs
in meeting real-world security, functional, and performance
requirements. We first perform a security analysis of BFS

against a broad set of adversaries within the network, in-
memory, and on-disk. We then provide an implementation
of BFS, running in a live, cloud-like environment, and evaluate
the performance across a series of Filebench-based [25] micro-
and macro-benchmarks. Our analysis juxtaposes BFS against
the industry standard NFS [10], [12], [13] and a state-of-the-
art SGX-based file system NeXUS [20]. We demonstrate the
BFS delivers equivalent stronger guarantees than NeXUS and
up to a 2.5⇥ speedup. We also show that, compared to NFS
(with Kerberos encryption enabled), BFS delivers up to 2.2⇥
speedups across micro-benchmarks and incurs < 1⇥ overhead
for most macro-benchmark workloads. BFS takes a holistic
approach to cloud file system design, demonstrating that it
is possible to deliver strong security, high performance, and
client transparency.

We contribute the following:
1) An end-to-end design and implementation of BFS; BFS

provides comprehensive confidentiality and integrity pro-
tection for all file data and metadata, shields the host-
interface, enables secure and high-performance file sharing,
and enables extensible feature support.

2) A security analysis demonstrating the resilience of BFS
against a wide range of both known and new attacks in
the network, in-memory, and on-disk.

3) A performance analysis demonstrating that BFS can ensure
stronger security guarantees while providing practical
performance w.r.t. state-of-the-art systems.

II. BACKGROUND

A. Cloud File Systems
Cloud file systems extend the file storage capabilities of

local file systems (e.g., ext4 [26]) to a cluster of outsourced
server and storage hosts (or nodes) connected to clients by a
network 1. Here, the file system is similarly composed of both
global and per-file data structures that track the file system
data (e.g., file contents) and metadata (e.g., file attributes
and data locations). Server and storage nodes cooperate in
organizing, storing, and retrieving data and metadata for clients
under a shared file system; the storage nodes may be local
(directly-attached) or remote (connected via a storage-area
network or other network transport [27], [28]). To clients,
the distributed nature of the file system is transparent; once
mounted, the files presented under the mount point have the
same access semantics as files stored on any local file system.
Widely supported implementations of these principles include
the Network File System (NFS) [10], Amazon’s Elastic File
System (EFS) [12], and Google’s Filestore [13].

1This architecture falls under the umbrella of distributed file systems.

Conventional architectures typically follow a centralized
client-server model [10], [29], [11]. Here, clients issue file I/O
requests on behalf of end-users or applications (whether exe-
cuting on-premises or outsourced themselves) to a centralized
server across a network; the server itself exposes a POSIX-
like file interface for clients to access files under a shared
namespace. In executing file operations, the server organizes
the file data and metadata as fixed-sized blocks across the
storage nodes; the storage nodes expose a simple interface
for the server to store and retrieve blocks (typically 4KB in
size). Clients typically coordinate these tasks with server and
storage nodes through remote-procedure call (RPC) request
and response messages.

B. Trusted Execution Environments
Trusted execution environments (TEEs) are hardware-based

security primitives that isolate execution of mutually distrusting
software components running on a shared host. The software
components may be other tenants’ user-level applications,
a hypervisor, or other system software. TEEs also provide
attestation capabilities, allowing remote clients to ensure the
legitimacy of the code running on an endpoint with whom they
are communicating.

TEEs accomplish this through access-mediation, hardware-
based complete mediation over designated protected (inside
the TEE) and unprotected (outside the TEE) regions of
physical memory, or additional CPU modes, processor modes
that restrict the scope of operations that particular software
components may perform within their execution context [22].
As a result, code and data residing in the TEE is granted
strong confidentiality and integrity protection even in the
presence of malicious software or hardware external to the TEE.
Mature TEE implementations offering these capabilities include
Intel SGX [22], AMD SEV [23], and ARM TrustZone [24].

III. SECURITY MODEL

System Components. We assume a centralized client-server
model (see Fig. 1) [30], [10]. The file system is orchestrated
by five components: client, network, server, TEE, and storage.
On the frontend, the client software provides a file interface
to either end-users (e.g., employees in an enterprise network)
or applications (e.g., a company’s web servers). The client
communicates over the network to a TEE running on an
outsourced server. The tasks at the server are handled by code
running either inside of the TEE or outside—denoted hereafter
as the “BFS server” and “untrusted host”, respectively. The
storage backend consists of the outsourced local or remote
storage nodes that receive commands to store or retrieve data
in fixed-sized blocks. In executing file I/O requests, messages
between the clients, BFS server, and storage nodes are proxied
by the untrusted host.

Trust Model. We consider an unmanaged deployment model,
where the organization deploys and administers the file system.
However, our design principles also extend to fully-managed
deployments, where the cloud provider offers file storage as-
a-service. We envision BFS as a replacement for widely-used
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Fig. 1: System components and workflow.   Clients perform
file I/O by having the À untrusted host proxy RPC messages
to the ÃBFS server and Õ storage nodes.

systems in either case [10], [12], [13]. We therefore consider a
client and TEE trusted components, and the network, untrusted
host, and storage nodes untrusted. We assume the client trusts
the TEE implementation.

Threat Model. Our threat model is rooted in three key obser-
vations: both file data and metadata have become high-yield
targets for adversaries [4], [31], [32], [33], [34], host-interface
attacks are a significant threat to TEE-based software [35],
[8], [6], and weak or complex cryptographic key management
increases the risks associated with key compromise [36], [37].
As such, the system is subject to attempts to maliciously access,
corrupt, swap, replay, reorder, or drop data sent between the
clients, untrusted host, BFS server, and storage nodes [38], [16],
[18], [15]. The untrusted host may abuse the host-interface—
for example, by crafting malicious arguments or return values
to hijack control-flow between client/storage and the TEE. And
lastly, adversaries may attempt to steal the keys used to encrypt
data on-disk.

In line with prior work, we consider denial-of-service, physi-
cal, and side-channel attacks out of scope (e.g., network-traffic
analysis [39] and other TEE-based side-channel attacks [16]).
We further discuss the limitations of extant TEEs in Section IX.
Our threat model resembles those of recent TEE-based file
systems, but differs in the wider range of attacks that we aim
to address together—notably, swapping attacks, host-interface
attacks, and key compromise.

Security Requirements. To meet real-world security re-
quirements, the file system must therefore provide end-to-
end confidentiality and integrity protection for both file data
and metadata, protection against host-interface attacks, and a
reliable cryptographic key management system that minimizes
the risks associated with key compromise.

IV. DESIGN CHALLENGES

At surface-level, designing a file system that meets our
security requirements may appear a trivial task: encrypt
data, sanitize inputs, etc. However, designing an end-to-end
solution is a much more nuanced endeavor. For example,
while encrypting data suffices to protect confidentiality, there
are security and performance trade-offs in deciding who has
access to encryption keys and where encryption occurs. We
characterize the key challenges under three themes.

C1. Protecting confidentiality and integrity. Ensuring con-
fidentiality requires new mechanisms that isolate all file data
and metadata from untrusted components while in-flight, in-
processing, and at-rest. Ensuring integrity requires being able
to attest the authenticity and correctness of code and data while
processing client requests. The central challenge here lies in
deciding how to securely partition tasks across trusted and
untrusted components. In particular, at the server, the trust and
privilege levels of components need to be considered at a far
more granular level than in conventional designs [10], [16].
Current TEE-based file systems still leave open several avenues
for attack (e.g., expose metadata), and a simple port of a file
server like NFS to a TEE runtime still leaves many security
issues unresolved (e.g., key management). We must therefore
develop a new set of end-to-end protocols that enable us to
more sensibly reason about and mitigate attacks, with minimal
overhead.

C2. Protecting the host-interface. Mitigating host-interface
attacks is a central challenge for cloud software [8], [6]. In our
context, a malicious host or storage node may craft malicious
arguments or return values to divert control-flow or cause other
confidentiality and integrity violations. For example, valid,
encrypted block data may be unknowingly swapped in place
of that actually requested, before being delivered to the TEE
from storage. Data encryption alone cannot defend against
such attacks. Further, reasoning about and mitigating them
across large and complex host-interfaces has been shown to
be infeasible [6], [8]; prior efforts provide support only for
a limited set of defenses [40]. The typical TEE-based library
operating system (libOS) model [16], [17] is therefore ill-fit for
use here. To comprehensively protect against them therefore
requires judicious host-interface design and techniques that
consider how inputs from the host may affect higher-level file
system semantics.

C3. Supporting diverse file system features securely and
efficiently. Cloud file systems are expected to support typical
features like file sharing and high-level policy management [37],
[41], [42], [43], [44], [45]. While various cryptographic tech-
niques have been proposed to realize this, such approaches have
significant practical limitations. For example, the typical, client-
centric encrypt-then-upload model requires clients to support ad
hoc cryptographic protocols and manage additional secrets. This
increases the risks associated with key compromise (from lack
of expertise, social engineering, or other human oversight). It
complicates the semantics of file sharing; supporting a common
application service like collaborative document editing is
infeasible here. Moreover, it introduces performance limitations
and additional constraints on feature support (e.g., supporting
compliance auditing for an enterprise). Reconciling these
concerns therefore requires a key management system that
is reliable, versatile, and low-overhead.

V. BFS DESIGN

TEEs provide a unique opportunity to challenge the basic
premise of prior cloud file system designs. However, while
TEEs provide primitives to isolate and mediate access to
sensitive data in memory, extending those guarantees beyond
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system memory to remote clients and persistent storage media
is non-trivial. The challenges stem from the fact that TEEs are
sandboxed environments and rely on the untrusted host (or other
kind of supervisor) to proxy access to external resources like
network cards. Some information must therefore be exposed
to the host such that it correctly executes requests on behalf of
the TEE. How to enable this capability securely and efficiently
remains an open question.

Our central goal is therefore to seek out new abstractions
that provide a more practical set of trade-offs. Our design is
guided by three design principles:

• Isolate data and metadata. We use the strong security
guarantees of TEE hardware to bootstrap new security
protocols that protect the confidentiality and integrity of
all file data and metadata while in-flight, in-processing,
and at-rest.

• Provide shielding support. We pivot on our isolation
protocols to develop a comprehensive set of mitigations
against host-interface attacks.

• Offload cryptographic work. We introduce an escrow-
based key management system that leverages TEE capabil-
ities to reduce the risks associated with key compromise
and streamline feature support.

A. Isolating Data and Metadata

Conceptually, isolating data and metadata requires two
tasks: deciding where file operations should execute and what
the host-interface should look like. This is challenging for
several reasons. First, both data and metadata are sensitive
information, as they directly (through file contents, permissions,
etc.) disclose private information about users and who they
communicate with. They must therefore exist in plaintext only
within the TEE (or client memory). Code running inside the
TEE must then be able to understand the notions of directories
and files to some extent, and code running outside should not
be able to learn what the sensitive data is.

Second, guaranteeing the integrity of file I/O requests
requires that the core file system logic (file operation handlers)
be attestable by clients. Using a libOS or other POSIX wrapper
library that deserializes client requests but then redirects them
onto a local file system managed by the untrusted host precludes

clients from being able to have assurance over how the file
operation is actually implemented underneath.

Third, the decision of how to partition tasks as above directly
impacts the granularity of the resulting host-interface. Opting
for a libOS or wrapper library may reduce development efforts
in porting core file system code to run within the TEE [16], [17],
[15]), but comes at the expense of an enlarged host-interface
that then needs protection. Current defense efforts for libOSes
provide support only for a limited set of attacks [40]. Such
approaches also observe significant performance overheads,
often > 10⇥ (and sometimes > 100⇥) end-to-end for local
and remote clients [16], [46], [15], [47].

Toward this, we introduce three abstractions: a trusted file
system core, secure I/O channels, and a partitioned block layer.

1) Trusted File System Core: In BFS, the file operation
handlers execute entirely within the TEE. As shown in Fig. 2,
the BFS server first consumes a buffered file or block RPC
message from a queue located in unprotected memory, decrypts
and deserializes it, then dispatches it to the appropriate file
operation handler. Any outbound file or block RPC messages
are then serialized, encrypted, and submitted through a similar
queue in unprotected memory. Note that the file system has
a metadata layout akin to UNIX-based local file systems [26],
with a superblock, inode table, etc. Any data or metadata
resident outside of the TEE is opaque to the untrusted host.
And our design therefore reduces the host-interface size to
only four functions: sending and receiving file and block RPC
messages.

2) Secure I/O Channels: Bridging the clients on the frontend
to the storage nodes on the backend then requires a secure
transport layer. While standardized protocols like TLS provide
means to realize this, the question here is what data can or
should reside at the transport layer and above it.

We first distinguish between two distinct types of communi-
cation channels: I/O channels and RPC channels. As shown
in Fig. 3, I/O channels form logical connections between two
endpoints. In contrast, RPC channels serve as the transport for
I/O channels. I/O channels thus may contain sensitive data (file
names, contents, R/W offsets, etc.) that must be kept secret
from untrusted components, and we therefore require them to
be terminated in the TEE. While RPC channels contain non-
sensitive data (assuming an encrypted payload) that need not
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be kept secret, terminating the RPC channels in the untrusted
host (which has been the de facto best practice) introduces
vulnerabilities to host-interface attacks. We similarly require
RPC channels to be terminated in the TEE; we defer further
discussion on this to Section V-B.

File I/O requests from clients are therefore protected by en-
crypting and authenticating all I/O parameters under ephemeral
key KC before issuing them to the BFS server. KC is known
only to them. MACs are computed over the request buffer and
sequence numbers tracked by the client and BFS server.

Block addresses (device ID/block ID pairs) must be exposed
to the untrusted host and storage nodes such that they can
correctly route and execute block I/O requests. We therefore
treat plaintext block data as sensitive, but block addresses as
non-sensitive. As detailed below, we encrypt block data prior
to being marshalled into I/O requests. However, here block
addresses may equally be stored in plaintext inside or outside
the TEE. As an additional layer of integrity protection against
network adversaries, block I/O requests are similarly encrypted
and authenticated by the BFS server and storage nodes under
ephemeral key KS .

3) Partitioned Block Layer: The block layer is the exit point
in the TEE where data must be prepared to be stored persistently
on disk. Blocks are first encrypted and authenticated by the
BFS server under a persistent block-encryption key KT ; blocks
are similarly decrypted in the TEE when retrieved from storage.
The key is known only to the BFS server, and therefore the
block I/O channel is terminated only at the BFS server. After
encryption, blocks are marshalled into (and unmarshalled from)
block I/O requests by the BFS server and delivered to storage
nodes by the untrusted host. We note that blocks may therefore
be doubly-encrypted and authenticated: first as blocks (under
KT ), then as block RPC payloads (under KS ). As an additional
layer of protection, the block address is similarly authenticated
by the BFS server.

4) Balancing Security and Performance: LibOSes have been
central to TEE-based software development, but they are not a
one-size-fits-all tool.

Strong Isolation. In BFS, clients are presented a canonical
POSIX file interface. We take a microkernel approach to
the server design, providing a file-system-as-a-service that
is attestable to clients and ensures the confidentiality, integrity,
and freshness of client data and all code handling the data.

Cutting Costs. Yet, the significance of this design extends
beyond simply that we protect metadata and prescribe a smaller
host-interface. It enables us to more efficiently design integrity
protection mechanisms. We implement blanket integrity protec-
tion for all files at the block layer rather than the file system
layer (i.e., provide full-disk encryption capabilities without the
downsides of current FDE methods). This enables us to avoid
having to use ad hoc solutions for ensuring integrity—e.g., per-
file hashes, which can be difficult to translate to block-level
representations suitable for storage on disk [20]. It also offers
performance advantages. It eliminates extraneous abstractions
on the critical path to storage—like syscall interfaces, VFS
layers, etc. Further, it avoids having to recompute costly

Device ID, block ID, block

Encrypted under storage session key

Client RPC Message

Encrypted under block-encryption key

MAC

Block RPC Message

File name, R/W offset, ...

Encrypted under client session key

On-disk Block

IV File op type Message length

MACIV Operation type Message length

MACIV Block data

File op args

Block op args

I/O channel

RPC channel

I/O channel
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Fig. 3: This message format captures the intuition behind our
secure protocols for isolating file data and metadata.

checksums/hashes over large files for trivial changes (e.g.,
single-block updates) [48].

B. Providing Shielding Support
Prescribing a smaller host-interface is critical to being able

to more easily mitigate host-interface attacks; we contrast
this with libOS approaches that expose tens or hundreds of
host-interface methods. In BFS, state transitions at the host-
interface are deterministic and predictable for all four message
types. Unlike prior works, we can therefore exhaustively reason
about how a malicious host may tamper with the interface
parameters and return codes. We introduce three additional
abstractions: authenticated dispatch, shielded block layer, and
guarded control transfer.

1) Authenticated Dispatch: The entry point for client re-
quests at the server is the RPC layer. While RPC systems have
been well-studied, how to properly terminate an RPC channel
in a TEE is an open question. Terminating RPC channels in
the untrusted host (by simply hooking the functions running
in the TEE to appropriate RPC handler stubs) has been key
to accelerating I/O in TEE-based systems [46], [16], [49].
However, this approach directly exposes RPC opcodes to the
untrusted host, and are therefore vulnerable to the untrusted
host simply changing the opcodes to invoke arbitrary RPC
handlers. For read-only interfaces, this can cause incorrect
data to be returned to users or applications, and for read-write
interfaces, this can cause mutations to the file system state to
be incorrect.

The root of the problem stems from RPC interfaces con-
taining handler functions with similar or identical function
signatures. Consider a host-interface with methods for opening
files and changing file permissions. An open operation
has the signature int open(const char *pathname,
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int flags), and a chmod operation has the signa-
ture int chmod(const char *pathname, mode_t

mode), with mode_t defined as the same integer type. With
identical signatures, a malicious host can recast an open

operation into a chmod operation, and the TEE will interpet
the same (valid) I/O parameters in a different context. This
would allow the host to induce a permissions change on a file.

In BFS, we therefore consider RPC opcodes sensitive and
terminate file RPC channels (in addition to I/O channels) in the
TEE. All file RPC parameters are authenticated and verified by
the BFS server and clients before any file operation proceeds.
As shown in Fig. 4, once clients attest the TEE, this ensures
controlled dispatch of file I/O requests: only the file operation
requested by the client is invoked by the BFS server. Note that
we could alternatively delegate RPC tasks to the untrusted host
by exposing, but still authenticating, the type code. However,
we aim to limit the number of entry points into the TEE—
keeping the interface size small, constant (w.r.t. the number of
supported file operations), and deterministic. We also aim to
reduce costs associated with crossing protection boundaries to
perform integrity checks.

2) Shielded Block Layer: The exit point for requests on the
backend is the block layer. In contrast to client RPC channels,
block RPC parameters are considered non-sensitive because
we require the untrusted host and storage nodes to handle
persistence of blocks. We do not enforce similar restrictions
on block RPC messages. However, the TEE stills need to be
able to detect and respond to a malicious host that supplies
corrupt, replayed, or swapped blocks. Towards this, we extend
the calculation for block MACs to use the block address as
additional authenticated data (AAD) along with the block data.
We then use a Merkle hash tree [50], with the block MACs as
the leaves, to prevent block replays/rollbacks and ensure the
freshness of block data when retrieved by the TEE. The tree is
stored on a separate region of the disk and read into protected
memory on boot.

Like other file systems, our Merkle tree protects block
correctness and freshness. However, the Merkle tree alone
is still prone to second-preimage attacks and cannot prevent
valid, encrypted blocks from being swapped in place of those
actually requested before being delivered to the TEE from
storage. In contrast to prior designs, our MAC construction
therefore additionally prevents block swapping attacks.

3) Guarded Control Transfer: Our authenticated dispatch
and shielded block layer mechanisms mitigate confidentiality
and integrity violations resulting from maliciously crafted host-
interface parameters. It remains to consider how to mitigate
attacks resulting from malicious return codes supplied to the
TEE by the host. While prior work has studied similar host-
interface attacks to some extent [8], [6], current mitigations
address only a few specific attacks [40].

The root of the problem lies in how return codes are
typically handled in file systems. Standard practice in Linux for
system calls like read() is to propagate return codes (both
successes and errors) up the call stack from device drivers,
through the block layer and file system layer, and back to
clients [51]. Note that the different software layers all use
standard Unix errno codes. However, simply permitting the
untrusted host to propagate arbitrary return codes would enable
it to exploit vulnerabilities or weaknesses in the error-handling
or decision-making logic in the file system or application code.
We therefore need a mechanism to more rationally handle
return codes.

The BFS server intercepts return codes from the untrusted
host and handles them in one of two ways. A return code
of zero indicates a success, and the server proceeds. Any
logical failures will be detected by the trusted file system
core and either handled locally (e.g., retry block-write) or
reported back to the client. Any other return code indicates
a failure and is transformed into a generic I/O failure (EIO)
before being reported back up the call chain to the client. False
positive return codes will therefore be detected on a subsequent
read/write via the Merkle tree. False negative return codes may
only cause retries at the server (up to some limit) or generic
I/O errors at the client; indeed physical I/O errors are typically
handled transparently by the cloud provider [52], [53]. In the
absence of formally-verified file system or application code,
this provides a hardened file system that raises the bar for
attackers looking for control-flow exploits.

C. Offloading Cryptographic Work

Supporting a diverse set of features securely and efficiently
has been a central challenge in secure file system design.
Several decades of research have broadly focused on client-side
encryption techniques (i.e., encrypt-then-upload) as a means
for protecting outsourced file data [19], [38], [20]. /While
shown to be useful in some contexts, such designs are ill-
fit for typical usage patterns of cloud storage. Most notably,
this requires complex, interactive, client-to-client protocols to
perform simple tasks like sharing a file. This diverges from
the server-focused, POSIX-based NFS model that most cloud
applications are accustomed to. We take a different approach
in BFS by offloading as much cryptographic work to the BFS
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server as possible. We introduce two abstractions: a trusted
key escrow and a shared persistent key.

1) Trusted Key Escrow & Shared Persistent Key: In BFS,
we recognize the BFS server as an extension of each client
running on the outsourced server and appoint it as a trusted
key escrow for clients. We now revisit the use of the block-
encryption key (KT ) and ephemeral client (KC) and storage
(KS ) keys; our security protocols are shown in Fig. 5. We first
distinguish between the notions of encryption for persistence
and for transport: data is encrypted for persistence for the
purpose of being stored on disk and encrypted for transport
for the purpose of being sent in RPC messages.

The BFS server encrypts blocks for persistence under key
KT , shared by all clients. We note that KT may represent a
single key or a master key from which other persistent keys are
derived (but shared by all clients). KT is known only to the
BFS server and generated when the server first boots. Blocks
are encrypted for transport in RPC messages to clients under a
per-client session key KC . The key is negotiated when a client
mounts the file system. Note that block RPC parameters are
treated as non-sensitive (as blocks are internally shielded), thus
we do not require a similar construction for KS (it may or
may not be ephemeral/shared among storage nodes).

2) Key Maintenance: Using a trusted key escrow introduces
additional challenges for bootstrapping the file system. For
generating and storing persistent keys (like KT ), prior work
has relied on unique sealing keys burned into the processor
hardware on the server. Yet, part of the advantage in outsourcing
lies in the flexibility in service placement: the BFS server may
be migrated to a different machine due to third-party control-
plane decisions, server failure, etc. Besides flexible placement,
persistent keys must also be rotated occasionally to prevent
attacks enabled by cryptanalysis; coupling the persistent key
to the physical machine complicates this. When outsourcing,
we therefore require more flexibility in how KT is generated
and stored.

In BFS, KT is machine-independent (i.e., initialized when
the file system is formatted). We then use the unique sealing key
of the TEE as a key-encrypting key to persist KT on the current
machine where BFS is running. This provides hardware-backed
persistence of the block-encryption key, without requiring any
additional key service (third-party or otherwise), and while
retaining data availability as the BFS server is relocated to
different physical machines. Moreover, it allows administrators
to rotate persistent keys as often as necessary (without requiring
a separate physical machine) and enables a seamless key
transition period (by permitting incremental re-encryption of
data under the new key).

3) Balancing Security, Performance, and Utility: The central
challenge with supporting diverse requirements lies in how to
efficiently manage encryption keys. We highlight the advantages
of our approach below.

Assessing Risks. Entrusting the BFS server with the persistent
key enables us to overcome many of the security risks
associated with conventional client-side encryption approaches.
Indeed, (non-TEE-based) delegated key management has be-
come a pivotal aspect of cloud services [54], [55]; TEEs provide

File I/O Messaging
1) C ! T : {m1}KC ,MACKC ({m1}KC , sC) (client RPC request)
2) T ! C : {m2}KC ,MACKC ({m2}KC , sT,C) (client RPC

response)
Block I/O Messaging

3) T ! S : {b1}KS ,MACKS ({b1}KS , sT,S) (block RPC request)
a) b1  addr (read)
b) b1  addr, {b}KT ,MACKT ({b}KT , addr) (write)

4) S ! T : {b2}KS ,MACKS ({b2}KS , sS) (block RPC response)
a) b2  addr, {b}KT ,MACKT ({b}KT , addr) (read)
b) b2  ACK (write)

Fig. 5: BFS security protocols. C, T , and S represent the client,
BFS server, and storage node. Sequence numbers are denoted
by s.

a unique opportunity to capitalize on both the security and
performance advantages of delegated key management. Notably,
clients are not required to have expertise and infrastructure
(e.g., trusted hardware modules) to properly protect keys and
other secrets from being compromised. This reduces the risk
of key compromise due to lack of expertise, social engineering,
or other human oversight.

Indeed, clients must trust that the TEE implementation will
faithfully protect the key as intended. However, significant
discrepancies arise in arguments about how trust assumptions
change between the two approaches, as client machines are
typically equipped with similar processors as the server operat-
ing the TEE, and clients must therefore still trust that the client
processor’s firmware is acting in good faith if/when handling
secrets. Our approach raises the bar for attackers by delegating
to the administrators the task of hardening the (server) machines
carrying secrets. This opens many opportunities to improve
utility and performance.

Secure and High-Performance File Sharing. The data access
model in BFS is similar to that of NFS, where file operations are
executed at the server. We contrast this to other approaches that
cache whole-files at clients and largely execute file operations at
the clients [56], [20]. Our approach ensures that the mechanics
of encrypting data for persistence are transparent to clients. In
turn, this avoids having to bootstrap costly, interactive, client-
to-client protocols to perform simple tasks like sharing files.

Sharing is done using typical chmod or setfacl requests.
Recipients can then begin retrieving the data, encrypted under
their session key, without knowledge of the persistent key.
Importantly, access is asynchronously granted to recipients,
without requiring to explicitly notify them or otherwise
requiring them to be online during the sharing process. We
contrast this with approaches that require always-online clients
for sharing to effectively occur (e.g., to distribute persistent
keys) [20], which can become prohibitive as the file system
grows or access rights change frequently.

Efficient Revocation. Revocation in secure file systems is
notoriously challenging [57], [37], often requiring complex
protocols for generating new encryption keys, re-encrypting
data under the new keys, and distributing the new keys to the
clients retaining access rights. In BFS, the separation between
keys used to protect data for persistence and those for transport
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provides a dual benefit to file sharing. It revives canonical
semantics of revocation: revocations are enforced through
simple permission/ACL changes on files. This requires a single
operation by the data owner, and revoked clients immediately
lose access to the files.

Policy Management. Our data access model also simplifies
the mechanics of other administrative tasks. Specifically, using
the BFS server as an escrow allows us to realize a TEE-driven
reference monitor, as all requests to read or write data must pass
through the BFS server. This design point resembles traditional
escrow systems, but differs in that the trust in the escrow is
hardware-backed, and the BFS server can perform complex file
system operations rather than simply key storage. The escrow
therefore has three unique capabilities.

First, it can enforce access controls on data for both normal
users and administrators. For example, the BFS server can
allow administrators to perform compliance auditing, while
user’s can attest (through attestation over the server code)
that the programmed policies meet reasonable expectations
of user privacy (against both administrators and other users).
Second, giving data visibility to the BFS server enables
implementing tailored optimizations server-side, such as block-
level replication, prefetching, etc. Lastly, retaining a canonical
POSIX API for clients decouples client and server interface
dependencies—which would otherwise make it intractable to
patch or implement new features server-side without incurring
compatibility hazards. To support this, the BFS server exposes
RPC methods for configuring file-level access controls (ACLs)
and other system-wide policies.

VI. SECURITY ANALYSIS

Below we provide an analysis of the security guarantees
provided by BFS, with a particular focus on confidentiality and
integrity. We organize the analysis around the primary BFS

components—examining a concrete set of attacks against the
client, untrusted host, BFS server, and storage nodes. Attacks
reflect those enumerated in our threat model (see Section III).

Client. While client machines are considered trusted, an
attacker who successfully compromises a client machine may
obtain access to any sensitive data the client has cached locally,
as well as the client’s session key (and thus can temporarily
impersonate them). While such is the case for any file system,
clients in BFS do not manage persistent secrets and therefore
the attacker would not have unfettered access to file system
data. We can therefore minimize the blast radius in the event
of a compromise.

Untrusted Host. At the untrusted host, malicious third-party
software/firmware, or a co-located tenant who has gained
escalated privilege, may attempt to access or corrupt messages
or return codes delivered to the latter three components. Our
trusted file system core ensures that sensitive data/metadata
exists in plaintext only within the TEE, while encrypted RPC
messages and blocks stored outside of the TEE are opaque to
the untrusted host. Our authenticated dispatch, shielded block
layer, and guarded control transfer mechanisms ensure that
RPC channels cannot be hijacked or replayed, and return codes

cannot be manipulated to arbitrarily direct control-flow. The
primary file system secret (block-encryption key) is only known
to the TEE. These mechanisms ensure the untrusted host cannot
tamper with file system code or data while processing client
requests.

BFS Server. While the BFS server is considered trusted, in
the absence of formally-verified file system code, an attacker
who manages to find and exploit a weakness in the BFS server
code will have access to the block-encryption key and all file
system data. However, the BFS code must be attested by clients
and therefore any deviations from a trusted state (i.e., how
routines are implemented or what secrets are present) will be
detected by clients. We can therefore ensure that a compromise
is localized to the exploitable code, and an adversary cannot
arbitrarily change the TEE functionality.

Storage. Storage nodes may similarly become compromised
and attempt to access or tamper with blocks as they are retrieved
from or written to disk. However, attacks manifesting at storage
nodes are recognized and handled by the BFS server as an
attack by the untrusted host; our shielding mechanisms will
ensure that block data read from disk is consistent with the
Merkle tree, and any tampering on writes will be detected on
subsequent reads.

VII. IMPLEMENTATION

We implemented BFS for Linux hosts in ⇠22 k lines of C++.
It has a metadata layout similar to local ext file systems and
is composed of client, server, and storage nodes.

Client. End-users or applications mount the file system to
a local directory through the FUSE [58] API, with file
operations sent as RPC messages to the BFS server. Our
client implementation is thread-safe, using reader-writer locks
to support entry by multiple threads. It also supports a rich
set of file operations: getattr, mkdir, unlink, rmdir,
rename, chmod, open, read, write, release, fsync,
opendir, readdir, releasedir, and create. Like
NFS, the BFS client also supports data and metadata caching
using the client’s local file system. This enables reads to quickly
be served without extra network round trips, and enables
writes to finish quickly and be batched and written back by a
background flusher thread. The flusher thread has configurable
parameters for writing back dirty data that we calibrated to
match the writeback parameters/triggers for NFS.

BFS Server/Untrusted Host. The BFS server is an ext4
implementation ported to Intel SGX. It executes file operation
handlers and block management tasks like block allocation
across storage nodes; our implementation supports linear and
striped allocation. The server is multi-threaded, with one worker
thread per client.

The untrusted host is an RPC server and client that com-
municates with clients and storage nodes on behalf of the
BFS server. We implemented a lightweight RPC library for
communication between the clients, BFS server, untrusted host,
and storage nodes.

Storage. Storage nodes are simple block devices that receive
block RPC requests over the network or locally. Requests



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

are executed by memory-mapping the associated block-device
file into unprotected memory (with an mmap syscall) and
reading/writing at the appropriate block offset.

Authentication and Access Control. Our design primarily
address access control at system-level as opposed to file-level
(i.e., ensuring only clients and the BFS server may access any
data in the file system). We implement file-level access control
semantics similar to NFSv4 with AUTH_SYS-style authentica-
tion (i.e., file read/write/execute permissions enforced on unique
user IDs associated with each connected/authenticated client),
but note that the BFS server exposes hooks for configuring
file-level and system-wide policies. We leave future work
to integrating the system with mature authentication and
authorization protocols such as Kerberos or OAuth.

Encryption and Integrity. Communication between the clients,
untrusted host, BFS server, and storage nodes is protected
via standard AES-128 symmetric encryption. We use Ga-
lois/Counter Mode (GCM) as it protects integrity with the
MAC generated as part of the encryption process. The BFS

server uses SGX cryptographic libraries while non-TEE BFS

code uses libgcrypt. While we use pre-shared keys in our
implementation for simplicity, keys could be acquired through
a PKI or other key-negotiation protocols 2. Finally, as an
optimization, complete mediation of encryption and integrity
checking across the host-interface is ensured through the type
system: functions that traverse the host-interface only accept
secure types, and sensitive data must be encapsulated in these
types through encryption/MAC.

VIII. PERFORMANCE EVALUATION

We evaluate the performance of BFS under a set of micro-
and macro-benchmarks drawn directly from prior works [47],
[20]. The workloads represent two envisioned use cases of
BFS: user- and application-based clients. The former may be
a developer using BFS as a secure personal cloud drive for
documents or code, and the latter may be a company requiring
secure cloud storage for an application such as a webserver.
We seek to answer the following questions:

1) How much end-to-end read/write performance can BFS
deliver w.r.t. state-of-the-art systems?

2) How well does the BFS file system layer perform w.r.t.
state-of-the-art SGX-based (local) file systems?

3) How well does BFS perform on complex workloads
involving a mix of read/write and metadata operations?

A. Experiment Setup

Testbed. Similar to other works [17], [20], clients/server run
on a local cluster containing Intel Core i7-10710U 1.10GHz

processors with 12 logical cores, 32GB memory, and locally
attached Samsung 980 Pro NVMe SSDs. All machines are
Debian-based and connected in a local network over 1GbE

interfaces. The SGX code is compiled in HW mode using

2We chose not to use standardized security protocol suites like TLS [59] to
allow us to experiment with a wide range of constructions, optimizations, and
security policies in current and future work.

SDK version 2.24, the native SGX driver in the Linux 5.15
kernel, and the standard 128 MB EPC. The non-TEE code
uses libgcrypt v1.8.5.

Baselines. We compare the performance of BFS against several
other systems. First, we compare against a non-SGX version
of BFS (with SGX ocalls and ecalls simply replaced by direct
function calls) to measure SGX overheads. Next, we compare
against NFS (with/without Kerberos network encryption),
because it is the industry-standard for cloud file system
deployment (e.g., used in AWS EFS and Google Filestore [10],
[12], [13]). We compare against NeXUS [20], an SGX-based
cloud file system that handles all tasks client-side, using the
cloud as a simple persistent storage. We note that NeXUS
appears only in half of the micro-benchmarks and no macro-
benchmarks, because the code does not support direct I/O and
simply crashes when trying to run any non-trivial workload. We
also compare against Gramine [16], [60] (formerly Graphene-
SGX), because it is decidedly the state-of-the-art in SGX-based
file systems, being backed by several industry partners and
under active development by the Linux Foundation [61]. Finally,
we compare against ZeroTrace [62], which is another SGX-
based local storage interface that provides oblivious access
to generic array data structures (e.g., an array of file data
blocks) with ORAM techniques. Though BFS provides a more
comprehensive set of security guarantees than the latter two
systems, we compare against them to understand the viability
of BFS in practice.

The BFS and NFS system configurations provide different
confidentiality and integrity guarantees and are denoted as
follows: (1) nfs_ne, the NFS baseline without any encryption;
(2) nfs_we, NFS with Kerberos-based network encryption
and integrity protection (i.e., mounted with sec=krb5p) but no
disk encryption; (3) bfs_ne, the BFS baseline without SGX
memory encryption; and (4) bfs, BFS with full encryption and
integrity protection (network, memory, and disk). Importantly,
we note that bfs provides additional security guarantees (mem-
ory and disk encryption) over nfs_we, the NFS deployment
mode typically used in practice.

Client Optimizations. Client optimizations are a central
component that enables NFS to minimize RPC calls to the
server and support high-performance applications. Of note are
NFS’s use of client-side data and metadata caches (which
enable fast read/write paths), compound operations (which
batch multiple RPCs to reduce round trips), and delegations
(which enable clients to act autonomously when performing
certain operations like opening/closing files) [10]. While our
implementation currently supports client-side data and metadata
caches, the core innovation of BFS is not client design. In
addition to running workloads with client caching enabled, we
therefore also attempt to isolate the effects of sophisticated NFS
client optimizations to accurately measure the raw performance
that the BFS server can deliver w.r.t. the NFS server. We do
this by running direct I/O-based workloads with the noac
NFS mount option (similarly toggled in BFS), which partially
isolates optimizations. Note that there is no straightforward
way to disable other NFS client optimizations. Other mount
options follow best-practice [63].
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Fig. 6: Micro-benchmark performance. Single-client, local storage, with client caching (left) and without client caching (right).

B. Micro-benchmarks

We first study the performance of BFS under standard micro-
benchmarks [47], [20], [64]. We aim to understand the SGX
overhead costs and the raw achievable read/write performance
of BFS at various I/O sizes. The workload profiles are provided
by Filebench [25] and are single-threaded; we will analyze
multi-threaded performance in the macro-benchmarks. The
seqread workload performs sequential reads of the specified I/O
size on a preallocated 1GB file. The rread workload performs
random reads of the specified I/O size on a preallocated
1GB file. The seqwrite workload writes a new 1GB file
sequentially with the specified I/O size. The random write
workload performs random overwrites of the specified I/O size
on a preallocated 1GB file. All benchmarks run for 10 minutes
to allow a large number of I/Os to complete, and the mean
throughput across 10 independent trials is taken. Caches are
flushed between each experiment.

Fig. 6 shows the performance under each workload, with
client caching enabled in the four graphs on the left and
disabled in the four graphs on the right. The general trend
across all graphs is that throughput increases with I/O size.
This indicates that clients are able to make more efficient use
of link bandwidth per-request by using larger I/Os (i.e., RPC
messaging costs are amortized).

SGX Overheads. As bfs_ne runs without SGX enabled (the
same code, with direct function calls used in place of SGX call
gates), it serves as our baseline for understanding the relative
overhead of using the TEE. With client caching enabled, we
observe that on average bfs delivers > 90% of the throughput
of bfs_ne. In fact, across all workloads, even at large 128K
I/Os, bfs nearly matches the performance of bfs_ne. We
attribute this to the client cache being able to largely absorb
overheads associated with disk encryption and the Merkle tree
by handling read and write requests client-side.

With client caching disabled, we observe that bfs can
deliver similar write performance to bfs_ne. However, the
read performance difference is more significant (approx. 50%)
at large I/O sizes. We attribute this to SGX paging overheads,

which can affect certain workloads in unpredictable ways [65].
We will revisit this point below.

Comparison to NFS [10]/NeXUS [20]. With client caching
enabled, we observe that bfs delivers nearly the same read
throughput as nfs_ne and nfs_we, up to 12.5 GB/s with
128K I/Os. We note that these throughputs reflect those seen
in practice under the same mount options, which can range
from a few hundred MB/s to several GB/s [66]. bfs also
substantially outperforms NeXUS, up to 2.5⇥ with 128K I/Os.
We attribute this to BFS having a more efficient client design
than NeXUS, and the client cache being as efficient as the
NFS client cache in general—which allows clients to handle
reads at a speeds approaching DRAM speed. We note that the
BFS client design is fundamentally different than NeXUS’s.
In NeXUS, clients perform all cryptographic work, and this
approach has many practical limitations (Section V-C). Notably,
NeXUS does not prevent rollback attacks (as noted by the
authors), and it requires clients to store the entire file system
locally, which is intractable at large-scale. Further, the client-to-
client nature of file sharing necessitates always-online clients.

With client caching disabled, we observe that bfs delivers
up to a 2.2⇥ speedup over nfs_we on read performance.
We attribute this to our unified, user-space server design,
whereas the NFS server runs in the kernel and often requires
expensive upcalls to user-space daemons [10]. However, as
similarly observed above against bfs_ne, the read perfor-
mance difference with nfs_ne is more significant at large I/O
sizes. Yet, read caching is a standard optimization for many
applications—web servers in particular, which are a common
TEE-based application. And client caching can largely mask
read overheads and enable bfs to deliver near-equivalent end-
to-end user/application performance to bfs_ne and nfs_ne.
Thus, from a practical standpoint, the performance difference
here is not a fundamental problem.

With client caching enabled, bfs delivers similar random
write performance to nfs_ne and nfs_we at I/O sizes larger
than 4K, with up to a 4⇥ speedup over NeXUS at smaller I/O
sizes. However, the sequential write performance difference
with nfs_ne and nfs_we is significant. Sequential writes
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Fig. 7: BFS shows practical performance on metadata opera-
tions. bfs has lower open and close latencies than nfs_we

across all workloads. bfs has higher fsync latency, but the root
cause is NFS client optimizations which delay actual fsyncs
until subsequent closes/opens.

are write-allocating, meaning that they cannot exploit data
caches. We found that the NFS client optimizations (compound
operations and delegations) more efficiently handle all of the
internal RPC calls associated with write-allocating write()

syscalls. We therefore attribute this performance difference to
BFS having a less efficient client design than NFS, particularly
in the context of handling sequential writes.

However, as seen from the results with client caching
disabled, bfs delivers > 85% of the throughput of nfs_ne
and nfs_we for sequential writes. This implies that the BFS
server is nearly as efficient as the NFS server at handling writes.
As mentioned, the core innovation of BFS is not client design.
Thus, we conclude that the performance difference with client
caching is not fundamental to the BFS server design, as further
client improvements can help eliminate overheads 3.

Metadata Operations. In Fig. 7, we examine the latencies of
performing critical metadata operations: open, close, and fsync
(to force file data buffered at the server to disk). Latencies are
averaged across I/O sizes shown in Fig. 6. Note that NFS client
optimizations like delegations and compound operations have
more significant and unpredictable effects on client performance
with client caching enabled, which can skew measurements of
the underlying server performance. We therefore focus on the
case without client caching to isolate NFS client optimizations
as much as possible (which BFS does not implement) for a
fairer comparison.

Fig. 7 shows that bfs has lower open and close latencies
than nfs_we across all workloads. In particular, bfs has
nearly half the latency of nfs_we on sequential reads.
Interestingly, we also observe that bfs has higher fsync latency
than nfs_we and nfs_ne. However, NFS allows clients to
delay COMMIT RPCs generated by fsync calls until subsequent

3To enable better integration into real systems, we are currently extending
the NFS server implementation to enable callbacks into the BFS server code,
such that BFS exports can be exposed transparently to standard NFS clients.

Fig. 8: Speedup of BFS over Gramine [16], [60]. Configuration
parameters are encoded in the form a-b-c, where a denotes
whether the Merkle tree is enabled (1) or not (0), b denotes
what cache size is used, and c denotes the I/O size used.

file closes or opens. This is why fsync appears extremely fast
(< 1µs) and why NFS opens and closes appear relatively
slower than BFS.

We do not conclude that BFS can necessarily open or close
files faster than NFS, nor that BFS fsync is slower. There is
a delicate trade-off between deciding when to flush data and
the user/application-perceived performance. Delaying actual
flushes (as NFS does to ensure close-to-open consistency)
can allow an application to proceed with more work in real-
time but weakens durability guarantees. Not delaying flushes
can ensure stronger write durability but at the expense of
users/applications possibly encountering latency spikes when
fsync is called (e.g., whenever a developer saves a source
file in their editor). However, although bfs fsync latency is
higher than NFS, the latency across both write workloads is
< 73µs. This is still far below latency thresholds deemed to be
perceived by users as instantaneous (< 100ms) [67]. Further,
for applications like databases, write stalls may occur frequently
if fsync cannot keep up with incoming write requests. However,
the mean fsync latency of < 73µs we observed across I/O
sizes for the seqwrite/rwrite workloads for bfs is significantly
less than the mean write latency of < 1039µs. We also saw
in Fig. 6 that bfs already delivers write performance on par
with NFS. Thus, we conclude that BFS write performance is
not fundamentally bottlenecked by this higher fsync latency.

Comparison to Gramine [16], [60]. Next, we run the same
workloads directly against the Gramine file system implementa-
tion. Note that there is no frontend client for Gramine available
to measure end-to-end user/application performance. Our goal
is therefore to measure backend performance. Specifically, we
want to measure the trade-offs between the two approaches
to file system design discussed above. Fig. 8 shows several
different configurations, parameterized by workload, whether
the Merkle tree is enabled, whether BFS uses an in-TEE block
cache, and what I/O size is used.
BFS delivers 1� 2.5⇥ speedups over Gramine. The largest

speedups are observed under three configurations: at large I/O
sizes, when the Merkle tree is enabled, or when BFS maintains
a small block cache (256 blocks = 1MB). We attribute these
speedups to BFS having less software layers between the
read/write call entry point and storage, whereas Gramine has
several added layers of abstraction. We note that Gramine
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Fig. 9: Speedup of BFS over ZeroTrace [62]. BFS can deliver
better performance at small and large I/O sizes.

always caches entire files in the TEE, verifies the hashes only
once (when the file is opened), and flushes them out of the
TEE only once (when the file is closed). This can quickly
become prohibitive for large files. In contrast, BFS verifies
hashes and flushes hash updates on every file read/write, and
still shows performance improvements.

This result is significant because there has been a significant
push in the community to minimize the amount of code running
in the TEE, for fear of severe performance loss due to SGX
paging (and context switching) overheads [65], [46]. The result
is that the Gramine libOS model reigns supreme, where a
thin wrapper library runs in the TEE and the untrusted host
executes most of the server logic. Yet, the libOS model exposes
large and complex host-interfaces, which are hard to shield in
general—and state-of-the-art systems like Gramine have limited
shielding mechanisms in practice. This invites unnecessary
security risks [6]. BFS instead shows that it is possible to
deliver practical performance with more logic running in the
TEE and a minimal host-interface.

Comparison to ZeroTrace [62]. Next, we run the random
read/write workloads against ZeroTrace. ZeroTrace is a library
that can be statically linked into an SGX-based application,
and it provides oblivious access to array data structures—in
our case, this is an array of storage data blocks. ZeroTrace also
encrypts data and uses a Merkle tree to ensure freshness. Again,
there is no frontend client to measure end-to-end performance,
so we focus on backend performance. Further, as noted by the
authors in the code repo, the code for on-disk data structures
is broken, so we report ZeroTrace results on an in-memory
array, which underestimates the BFS speedups reported below.
We use the default ORAM parameters the authors used in their
benchmark scripts.

Fig. 9 shows the speedup of BFS over ZeroTrace at various
I/O sizes. First, we observe that BFS has nearly a 200⇥ and
410⇥ speedup over ZeroTrace on 4K random write and read
performance, respectively. Initially, increasing the I/O size
only worsened ZeroTrace’s performance, because it required
additional (costly) ORAM fetches (which are normally at
4K granularity, our block size). When examining larger I/O
sizes, we therefore instead increased ZeroTrace’s block size
parameter to reduce per-fetch costs. We still observed that
BFS had at least a 3.44⇥ and 4.75⇥ write and read speedup,
respectively, at 128K I/Os. BFS will likely see larger speedups
when using larger block sizes.

Fig. 10: Task latency of various Linux utilities, with client
caching (top) and without (bottom).

As a local storage interface, this shows that oblivious
interfaces still have a long way to practicality. The core
innovation of BFS is that it lifts the core file system layer
into the TEE to ensure all data and metadata are isolated
from the untrusted host, exposing a minimal block-level host-
interface. Thus, from a practical standpoint, BFS raises the bar
for attackers as high as possible without resorting to ORAM.

‰ Takeaway: These results lead us to two key conclusions.
1) SGX costs can largely be absorbed with client caching,
enabling performance close to state-of-the-art cloud file systems
like NFS. 2) BFS offers better performance and practical
advantages compared to NeXUS, stronger security guarantees
than Gramine, and balances the security-performance trade-off
more efficiently than ZeroTrace.

C. Macro-benchmarks

Next, we study the performance of BFS across various macro-
benchmarks exercising more complex mixes of read/write and
metadata operations. Like prior works [20], our workloads
include standard Linux utilities (to emulate user-based clients)
and various Filebench workload profiles (to emulate application-
based clients). The utility workloads are single-threaded, and
the Filebench workloads are multi-threaded (with up to 200
reader/writer threads). Filebench workloads run for 10 minutes,
and mean throughput across 10 independent trials is taken. The
utilities run until completion, and mean latency across 100
trials is taken. Caches are flushed between each workload run.

User-based Clients. Analyzing Linux utilities helps understand
how user-based clients will perceive the performance of
their networked storage [20]. The five workloads include:
git-clone, which clones the public linux-sgx-driver repo to
a folder on the BFS/NFS mount (containing approx. 20 files up
to 25K in size), grep, which searches for 100 random strings
in the repo, tar-c, which creates a new tar archive from the
repo, tar-x, which extracts the contents of the tarred repo,
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Fig. 11: Filebench macrobenchmark workloads, with client
caching. Read (top) and write (bottom) performance.

and make, which compiles the driver code. Fig. 10 shows the
performance across each utility, with/without client caching.

As observed in the micro-benchmarks, bfs has near-
equivalent performance to bfs_ne across each workload and
with/without client caching. With client caching, bfs sees
< 1⇥ overhead over nfs_we across all workloads except for
grep. We find that grep exercises many stat system calls,
which get translated into several RPCs to the server, which
NFS can efficiently batch together while BFS cannot. In fact,
without client caching, bfs has < 1⇥ overhead over nfs_we
across all benchmarks, and in fact sees lower latency than both
nfs_ne and nfs_we on the clone and tar-x benchmarks.

We reason that, without client caching, the BFS client
can perform certain metadata operations quicker than NFS,
and in aggregate, perform better on certain workloads. With
client caching, other NFS optimizations become more effec-
tive. Nonetheless, this shows that BFS provides reasonable
overheads for user-based clients. By extending the NFS server
implementation to hook into BFS callbacks, BFS clients will
be able to take advantage of all NFS optimizations and BFS

will approach the full speed of NFS.

Application-based Clients. Next we focus on real-world
applications that are commonly run within a TEE [16], [15].
The Filebench workloads include: oltp, which emulates an
online transaction processing system with 10 writer threads,
200 reader threads, and 100 files totaling approx. 10G in size;
videoserver, which emulates a video server with 1 writer
thread, 48 reader threads, and 226 files totaling approx. 226G
in size; and webserver, which emulates a webserver with
100 reader threads and 10K files totaling approx. 1G in size.

We first observe that bfs has near-equivalent performance to
bfs_ne across each workload; client caching largely absorbs

SGX overhead costs. Interestingly, we also observe that bfs
delivers nearly 14⇥ more read throughput than nfs_we, but
14⇥ less write throughput, on oltp. We do not conclude that
BFS necessarily delivers higher read throughput than NFS, nor
less write throughput. The NFS client also has several other
optimizations for prioritizing RPC requests (and internal lock
requests) initiated by certain syscalls. BFS does not prioritize
requests, and since oltp has 200 readers, reader threads tend
to acquire and hold read locks more frequently. Nonetheless,
bfs delivers nearly the same read/write throughput nfs_we
on videoserver and webserver.

This shows that BFS can deliver high performance under
high concurrency, and more complex workloads that exercise
more metadata operations with read/write operations.

‰ Takeaway: These macro-benchmark results further support
the efficacy of the BFS design. BFS largely follows the NFS
model, and as such, can deliver high-performance on many
workloads. And compared to state-of-the-art systems, we show
that many concerns raised regarding SGX overheads can largely
be mitigated with judicious client design.

IX. DISCUSSION

Below we discuss notable points of consideration for BFS.

Extending to Other TEEs. A core security guarantee of any
TEE implementation is that it provides a notion of isolation
between trusted and untrusted code running on a shared
machine. For example, ARM TrustZone TEEs are characterized
by a secure and non-secure “world” or state, where all memory
has an extra bit defining its state [68]. AMD SEV implements
a VM based TEE, providing separation at the boundary of the
secure VM.

While our implementation is based on SGX, the design of
BFS is not fundamentally tied to SGX. The BFS server only
needs a mechanism to send/receive incoming network messages
from clients on the frontend and send/receive incoming
messages to storage devices on the backend. There are many
SDKs and third-party libraries available to enable this across
a wide variety of TEE implementations [69]. The BFS server
can therefore be ported to any TEE platform. Note that the
security guarantees will only be as good as those afforded by
the TEE implementation (which may vary between vendors).
We leave future work to extending BFS to other TEEs.

Limitations. While our design successfully defends against a
wide range of known and new attacks, side-channels attacks
on TEEs still present a challenge [70], [71], [72], [73]. Most
work studying oblivious access mechanisms to defend against
side-channel attacks have focused on exploiting rich interfaces,
such as database queries. While here the untrusted host can see
block addresses in RPC messages, it remains an open question
to what extent low-level block access patterns can be traced
back to file system data or application logic. We discussed how
ZeroTrace can be used to defend against potential side-channel
attacks, but not without making a steep performance trade-off.
We leave future work to exploring side-channel attacks and
efficient mitigations at the block layer in more depth.
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Other Backend Architectures. Our current BFS design
focuses on a single-server scenario and centralized storage
management (i.e., both data and metadata are managed at the
same server). This architecture is emblematic of widely popular
cloud file systems offered by major cloud providers (e.g., AWS
EFS, Google Cloud Filestore), and is the file system of choice
for many cloud applications. We therefore focused our analysis
on these classes of workloads and focused analysis against
NFS. Other file systems like Ceph have taken a decentralized
approach to metadata management to improve performance,
largely for HPC environments [74]. BFS could be extended to
a decentralized architecture like Ceph. We leave such a design
and implementation to future work.

X. RELATED WORK

Cloud file system design has a long history that intersects
storage, applied cryptography, and trusted computing research.
BFS builds on the lessons learned in these works, rethinking
the fundamental file system abstractions to produce a design
with a unique set of capabilities.

Client-based Solutions. Client-based solutions have been the
standard approach to designing secure outsourced storage
systems. For example, CFS [19], Plutus [38], and NeXUS [20]
require clients (or trusted client proxies) to execute file
operations and handle all cryptographic tasks, while files are
organized as opaque blobs on the untrusted server/storage.
Other works also assume a client-based gateway to untrusted
storage [75], [76], [77], [78]. While perhaps useful in some
contexts, such designs are ill-fit for typical usage patterns of
cloud storage; NFS is still decidedly the state-of-the-art cloud
file system used in practice. First, such approaches typically do
not ensure rollback protection [20], as it requires costly client-
to-client coordination on every update to file data. Second,
they require clients to store the entire file system locally,
which is intractable at large-scale. Further, they burden clients
with having to execute complex protocols to perform simple
tasks like file sharing, and they require clients to have proper
training and expertise with managing keys. Clients commonly
expect a POSIX-like interface with similar guarantees to NFS
(close-to-open consistency), and key management is most often
delegated server-side. Running a common application such as
collaborative document editing is infeasible if not practically
impossible on top of such systems.

In BFS, we instead delegate encryption for persistence to
the file server (in our design, denoted as the BFS server) and
revive the NFS model by redesigning the structure of the file
server to provide stronger security guarantees (against more
attacks), extensible feature support, and practical performance.

LibOS Runtimes. Many recent efforts have relied on libOS
runtimes as a means for quickly porting server applications
to use TEEs. LibOSes enable applications to run unmodified
in TEEs by automatically generating the necessary wrapper
code (including encryption/decryption operations over data) to
redirect system calls from within the TEE onto the host [14],
[15], [16], [17], [18], [79]. Typical storage applications include
in-memory databases [80], local file systems [47], and key-
value stores [81], [82]. However, simply porting a traditional

file system (like NFS [10], GFS [11], or EFS [12]) to use a
libOS, and equipping it with TLS and disk-encryption, would
fail to meet all of our confidentiality, integrity, shielding, and
key management requirements. Security overheads seen by
these designs are also often too high to be impractical for use
by any real-world application [62], [47].

In BFS, we construct an end-to-end design from the ground
up, without relying on a libOS runtime. Instead, we design
a new file system core that provides protection for all data
and metadata, provides comprehensive protection against host-
interface attacks, and seamlessly handles encryption for per-
sistence and transport to enable high-performance file sharing
and policy management.

XI. CONCLUSION

Cloud file systems have become a critical component of
modern cloud infrastructure. As threat models evolve and
security requirements become stricter, new security mechanisms
are needed to protect against the myriad of attacks that may be
initiated by a malicious cloud provider, co-tenant, or end-client.
Yet, security, functionality, and performance are often at odds
with one another. The file system must still remain flexible
enough to support typical features like file sharing and policy
management, and efficiently. We introduced BFS, a cloud file
system that satisfies all of these requirements and substantially
outperforms state-of-the-art SGX-based file system designs.
BFS challenges current wisdom in cloud file system design
and demonstrates that simple architectural changes can have
significant practical advantages.
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