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Abstract—Load balancing in software-defined networks
(SDNs) is commonly realized with a centralized architecture.
Dynamic load balancing relies on the SDN controller to peri-
odically collect traffic statistics from network switches and make
decisions in a timely manner. In this paper, we examine the
extent to which an adversary that has compromised a switch can
influence the load balancing algorithm by misreporting its own
traffic statistics. We design an attack that allows an adversary to
perform preliminary reconnaissance, which means learning net-
work traffic distributions and setting attack parameters, and then
accurately model and estimate the reward from misreporting
while evading detection. Our evaluation offers three insights: (1)
network traffic exhibits discernible patterns by reconnaissance;
(2) the reconnaissance can be used to design misreporting attacks
that can effectively draw unfair proportions of network traffic
to the adversary under the guise of honest behavior; and (3)
reconnaissance itself can be accelerated by misreporting to launch
more targeted attacks.

Index Terms—load balancing, misreport, Software Defined
Networking, network security.

I. INTRODUCTION

Software Defined Networking (SDN) has fundamentally
changed the way networks are built and maintained. In SDN,
the control functions are integrated into a logically centralized
controller to separate the data plane and the control plane. This
separation enables flexible load balancing [1], routing, service
composition and network management. The deployment of
SDNs has also given rise to security concerns. Although SDN
eases the defense against traditional IP-network attacks such as
port scanning and firewall probing [2] by using agile structures
and policies [3], it also introduces new vulnerabilities that may
be leveraged to attack the network.

We focus on the vulnerabilities of the load balancer, which
is a key network function in the SDN controller. The load
balancer in SDN is typically divided into two components: the
controller application that runs the load balancing algorithm
and the network switches that enforce the load balancing
decisions via flow rules. In this paper we study the least-loaded
load balancing algorithm that require the network switches to
report traffic statistics to the controller application in discrete
time epochs. The controller application then decides how to
route incoming flows that arrive during that epoch. If a switch
is assigned the flows in an epoch, we say it “wins” the flows
or it “wins” the time epoch. Hence, dynamic load balancing
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requires distributed trust among the switches in reporting
accurate traffic loads, which creates an opportunity for an
adversary at a compromised switch to misreport traffic loads
to influence load balancing.

This vulnerability has been exploited [4] and several defense
mechanisms have been put forward to deal with these type of
attacks [5], [6]. However, existing studies have not addressed
the misreport attacks in the ingress/egress switches, which
make up a large proportion of the network. Therefore, we
argue that the adversary that takes advantage of this vulnera-
bility and misreports traffic loads can control the amount of
the traffic flowing through the compromised edge switch for
eavesdropping and traffic analysis.

In this paper we define an attack in which an adversary that
has compromised a switch measures the traffic distribution at
the switch, and based on this reconnaissance sets parameters
to capture a targeted load of traffic.

Using real network traces we show the difficulty in precisely
learning the traffic distributions and specifically targeting a
percentage of load, but also show such attacks can still be
effective. We bound the probability of capturing (“winning”)
a flow and its traffic depending on misreported traffic values. A
tight bound is difficult to achieve because a successful attack
biases the load on all switches, but nevertheless show that the
bound is useful in helping attackers launch an effective attack.

We also show that reconnaissance allows an adversary to
set their attack parameters to allow for a stealthy attack that
is still effective in capturing traffic. We then characterize the
effectiveness of the attack by showing how an attacker can
learn traffic characteristics in a network, such as the existence
of a specific flow or the types of flows in a network and
the stealthiness of the attack by evaluating the attack against
several defense methods.

A. Related Work

SDN vulnerabilities: The design of existing SDN archi-
tectures and protocols is performance-driven, leaving many
security vulnerabilities. One of the weakest aspects is the
inter-dependency between the controller and the switches.
This creates a vulnerability such that the attacker may gain
control of one or more switches [7] to inject malicious
control messages [8] or subvert control applications by sending
false reports [4]. Other works [9]–[14] demonstrate that an
adversary can compromise the control plane by eavesdropping
on control messages and client traffic or executing a man-in-
the-middle attack.



We exploit this dependency to perform network reconnais-
sance, for example, exploiting the network flow distributions,
and execute a misreport attack against the load balancer. We
build on prior work [15] which models an intelligent adversary
that also performs reconnaissance and misreporting. However,
unlike [15] which relied on uniform synthetic traffic, we char-
acterize flow distributions with real network traces, develop
realistics bounds of captured flows based on attack parameters,
and show how attackers can overcome imbalances in flow
characteristics and dynamics that emerge in real networks.
SDN defenses: Although the centralized control in SDN eases
the defense against traditional network attacks through agile
structures and policies [3], it remains open how to design
robust defenses against a large threat surface and unknown
attacks. There are some state-of-the-art detection systems that
have partially addressed the dependency issues between the
control plane and data plane. Sphinx [5] builds an auxiliary
network topology and data plane forwarding state graph to
maintain a global view of the network state. It tackles the
misreporting attack by examining the consistency of traffic
statistic reports of the switches that share the same flows.
However, it fails to detect the misreports from ingress/egress
switches for lack of another source of information for verifica-
tion. Related systems such as Spiffy [16] and OpenWatch [17]
specifically target short-term volume-based attacks by ma-
licious hosts but are not appropriate for monitoring noisy
datacenter or backbone traffic.
Load balancing security: Existing load balancing solutions
can be classified into two categories: static and dynamic.
Common static load balancing algorithms include Round-
Robin and hash-based solutions such equal-cost multipath
(ECMP) [18], Maglev hashing [19] and Beamer [20]. Static
solutions implement fixed mappings and thus cannot exploit
run-time knowledge of bandwidth utilization, often resulting
in under-utilization and increased latency.

Dynamic solutions implement various reactive techniques
for connection assignment by maintaining a per-connection
state. They allow more flexible decision making by exploiting
knowledge of resource utilization. Widely used dynamic load
balancing algorithms include least-response-time, least-loaded,
and least-connections, along with their weighted counterparts
[1], [21], [22]; all of which require the switches to report
statistics to the controller. In our work, we focus on the
least load selection because it is robust when switches have
different processing capabilities which is common with current
switches.

B. Summary of Contributions
Compared to prior work [15] with a similar methodology

we make the following contributions in this paper:
1) We formally define a misreport attack model with respect

to the number of time epochs the malicious switch wins.
2) We develop a lower bound and an upper bound on the

probability that the malicious switch wins a time epoch.
3) We verify the similarity of load report distribution among

the pool and over time which enables us to evaluate
the proposed attack using trace-driven Mininet experi-
ments. We show that a malicious switch can substantially

increase the amount of network traffic it captures and
characteristics it learns.

4) We mathematically define stealthiness and evaluate the
attack against several defense algorithms, which provides
empirical evidence that the attack is difficult to detect.

Roadmap. Section II introduces our models and problem
formulation. Section III presents our attack model. Section IV
evaluates the attack on network traces. Section V discusses
defenses. Section VI concludes the paper.

II. PROBLEM FORMULATION

A. Load Balancer Model

SDN-based load balancers typically follow a centralized
model, where the load balancer uses a global view of the
real-time traffic to facilitate fine-grained traffic engineering.
A simple example of network topology with a centralized
load balancing module is shown in Fig. 11; the edge switches
or ToR switches in datacenter networks may be connected
to server racks or another LAN. This centralized approach
to load balancing therefore critically relies on the network
switches reporting accurate traffic information to the controller
application.

We define a pool as a set of switch ports among which
the network load is balanced. To simplify analysis, we only
consider a static set of pool members.

The load balancer monitors the status of switch ports by
periodically collecting traffic load reports from each switch
port in the pool at a specified time epoch using features
supported by the OpenFlow protocol [23]. Assume each time
epoch lasts t seconds. The load reports will come in the
form of switch statistics, which record all the incoming and
outgoing bytes at the switch ports since the last report. We note
that load reports are typically collected at port-level (coarse-
grained) rather than, for example, flow-level (fine-grained)
because port-level statistics capture a better measurement on
the activity at the connected end-hosts.

Once the load balancer gathers the statistics via the con-
troller, it determines which pool member is assigned the
new incoming flows in the next time epoch. Widely used
algorithms like least-loaded-server typically follow a “winner
takes all” approach, where the least-loaded-server temporarily
receives all inbound traffic until the next epoch. When a winner
is selected, the load balancer issues new flow rules to the
appropriate switches to establish a path from the source to
the selected pool member.

There are several reasons why load reports are generated
from the switches and not the aggregator. First, there may
be multiple gateways that act as aggregators into a network,
so none know the full state of the load on the edge switches.
Further, load balancing decisions must be made at service-level
granularity, and therefore measurements are often collected at
the edge (rather than at aggregation-layer switches) to more
easily be able to discern flows targeted toward the specific
service. Finally, we note that end hosts do not run OpenFlow
agents in general and therefore, the edge switch load is used
as a proxy for server load instead [24].

1The switch-to-controller connections are hidden in the figure.
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The formal definition of the load balancing scheme follows.
Consider a network consisting of N pool members. The load
balancer polls the switches for their load statistics Rk

i every
time epoch, where i refers to the switch index, and k refers
to the time epoch index. New flows are directed to the switch
that reports the minimum load—in terms of the number of
bytes forwarded since the last time epoch (with ties broken
arbitrarily). Formally,

I = argmin
i

Rk
i

B. Threat Model

We assume a threat model similar to prior works on
SDN security [7]. An adversary may therefore compromise
a switch through hardware backdoors, weak admin interfaces,
or through vulnerabilities in potentially open-source switch
softwares [9], [25]–[29]. We assume for simplicity that only
a single edge switch in the load balancing pool is compro-
mised; our attacks extend naturally to multiple compromised
(and potentially colluding) switches and will only worsen the
damage that an attacker can do. We also assume for simplicity
that a single egress port on each switch is present in the pool;
an attacker who can misreport for multiple ports in a pool (or
across different service pools) will similarly be able to cause
more damage to a single service (or multiple services). The
following primitives are therefore available to the adversary:

• Primitive 1: The attacker can fully control the compro-
mised switch and can report any value whenever the load
statistics report is requested by the load balancer.

• Primitive 2: The attacker can ascertain whether a least
load-like algorithm or a least flow-like algorithm is
employed based on what information the controller is
requesting.

• Primitive 3: The attacker can record its own load statis-
tics reports and keep track of the flows routed through it.
Apart from that, it has access to adequate memory space
where the reports and the flow information may be stored,
which does not affect the detectability significantly since
it only requires less than 1GB in normal 10Gbps link.

• Primitive 4: The attacker can measure the pool size.
The attacker may probe and scan the subnet MAC, IP
addresses, ports and protocols so that it can accurately
reconstruct all the flow rules in flow table and determine
the load balancing pool. These capabilities has been
shown in prior works [30], [31].

The significance of a successful misreporting attack is
threefold. First, it may directly violate a core tenet of security,
availability, because an adversary can arbitrarily control how
much traffic they receive and thus potentially drop. Second, it
also directly allows an adversary to obtain unfair proportions
of client traffic sent to the target service endpoint. Prior works
have demonstrated that access to large volumes of network
traffic has been key means to fingerprinting services, users,
and obtaining other private information about clients and who
they are communicating with [32], [33]. If an adversary is
able to identify certain client behavior patterns, e.g., when they
login to a web service, they may execute targeted misreporting
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Figure 1. An example local-area network topology representative of, for
example, cloud datacenter networks.

attacks at specific times to capture certain client flows and
perform further traffic analysis. Last, misreporting can be used
by advanced persistent threats (APTs) as a stepping stone in
a larger reconnaissance campaign to stage and carry out more
sophisticated attacks such as mapping out subnets, clients or
other patterns [27], [31], [34], [35].

Since the pool members in our model are typically
edge switches which each contain a substantial number of
ingress/egress ports, verifying the integrity of load reports
is a challenging problem. Although efforts [5], [36] have
been made to eliminate this misreporting issue, the overhead
for these solutions is not negligible and, most fail to detect
misreported ingress/egress port statistics. Traditional cross
validation detection fails to detect the misreport because the
controller only has access to switch reports and inter-switch
link information while some links that connect some hosts to
edge switches are invisible to the controller. Our central goal
in this work is therefore to quantify the bounds of an attacker’s
capabilities when misreporting and provide recourse for future
defense designs.

The adversary leverages the primitives above to learn the
flow and load statistics and under-report to induce the load
balancer into sending a target volume of traffic through the
compromised switch. This type of attack are independent of
the actual internal network topology since the load balancing
is based solely on the load reports from edge switches which
are vulnerable to modification.

III. MISREPORT ATTACK MODEL

The misreport attack occurs in two phases: reconnaissance
and misreporting. The reconnaissance phase is used by the
attacker to learn network statistics so that it can set attack
parameters. In the misreporting phase the malicious switch
reports its traffic incorrectly according to the parameters set
based on reconnaissance. The reconnaissance and parame-
ter setting is important for two reasons. First, if malicious
switches are not careful with the parameters and frequency
with which they misreport, they may be easily detected by
the network administrator [15]. Second, the parameter settings
heavily influence the amount of traffic and flows an adversary
can capture. Thus the parameters must be set to evade detec-
tion and meet the goals of the adversary.

In the following, we first show that network reconnaissance
can accurately characterize network flows. We then present
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the attack model and establish bounds on how successful an
attacker can be with specific parameter values.

A. Preparations: Network Reconnaissance

This section shows why network reconnaissance is neces-
sary and feasible, and how to do it.

The simplest strategy for misreporting traffic is for an
adversary to always report a load value of 0. This trivial attack
will capture a large amount of traffic, but is easily detected. A
better approach is to have the adversary report a random load
value between zero and the true load of the switch. However,
our studies of real network flows shown below indicate that
real switches almost never experience a load of 0, and so that
type of attack may also be easily detected. In addition, because
the range of misreport is wide, the effectiveness of the attack
may not be high.

Therefore, we put forward a heuristic that determines mis-
report values based on reconnaissance. A malicious switch
collects load reports for a time period, and using these reports
approximates the distributions of the future load reports of all
the switches. It then launches the misreport attack with the
estimated load distribution. By sampling the misreport value
from the underlying true load distributions we significantly
reduce the risk of being detected. We discuss how to set the
parameter values in the next subsection; here we show that
network reconnaissance is effective for this purpose.

There are two fundamental characteristics of the load dis-
tributions that make the approximation possible: similarity of
the load distributions among the pool, and similarity of the
load distributions over time.

1) Dataset introduction: In this paper, we leverage the
network backbone traffic traces from the samplepoint-F of
MAWI [37] to validate the two characteristics. The traces are
derived from a 1Gbps transit link of the WIDE network to an
upstream ISP. They are collected every day from 2pm and
2:15pm since 2006. Only the 2020 traces are used in this
work. Each trace lasts 15mins and contains around 100 million
packets. The IP addresses in the traces are anonymized using a
prefix-preserving method and the mapping is consistent only
within a single trace2. We extract the IPv4 TCP and UDP
packets for analysis.

2) Similarity of load distributions among the pool: In the
context of the MAWI traces, the pool members could be
the edge switches that further dispatch the WIDE network
traffic among the upstream provider. Since the pool members
are generally homogeneous, they may observe similar traffic
characteristics(observe means the traffic is routed through the
switch) of load distribution with the least load load balancing
algorithm [4]. We examine the claim on 100 randomly picked
traces from the MAWI dataset. We set the load report interval
to be t = 1 second and pool size to be N = 10, 50, 100,
which are common edge switch pool sizes [38]. The load
report cumulative probability functions of two different traces
are shown in Fig. 2 and Fig. 3. Surprisingly, there are roughly
two dominant patterns. In some traces like Fig. 2, it is

2We don’t have any further information about the traffic locality since the
prefix preservation length is unknown.

hard to distinguish the load distributions of pool members.
Nevertheless, in some traces like Fig. 3, the pattern deviates
from the norm, where one or two members receive a higher
load than the others while others have nearly identical load
distributions. These two dominant patterns persist when the
pool size is set to any number from 10 to 1000. We observe
similar results in a Chicago to New York backbone link [39].

These results show that for the most part, the load distribu-
tion within a pool is nearly identical with only a few outliers.
The reason for the outliers is that there are some flows that
are heavy and long lasting, and if a switch receives this traffic,
it will tend to have a higher load than all other switches for
the duration of the flow. In summary, the uneven distribution
of load across flows can cause the outliers.
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Figure 2. Pattern 1: distribution of load reports collected every second from
a 10-member load balancing pool.
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Figure 3. Pattern 2: distribution of load reports collected every second from
a 50-member load balancing pool.

3) Similarity of load distributions over time: In addition to
similarity of flows within a pool, there is also similarity of
load distributions over time—specifically, over a sufficiently
short period of time. MAWI dataset offers several day-long
traces of samplepoint-F. Among them we randomly pick 30
30-min-long traces from 2020 and draw the load distributions
of the pool members of the first 15 mins and the second 15
mins separately. The pool size and the load report interval are
the same as those in the previous section. The result in Fig. 4
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confirms the similarity exists between the first and second time
intervals.
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Figure 4. Distribution of load reports collected per second from switches in
a 10-member load balancing pool over two consecutive periods (old refers to
the first 15 mins, while new refers to the second 15 mins).

Takeaway: The load distributions of the pool members are
similar. So are those of two consecutive time periods. This
enables a single switch to perform reconnaissance and load
distribution approximation, which in turn will allow the ad-
versary to misreport while evading detection.

B. Attack Model in Terms of Win Rate

In the second phase the malicious switch misreports a load
value at each time epoch, leveraging the load report and
other statistics collected in the first phase. Various choices of
misreport parameters like the misreported load amount lead to
different consequences. In this section we build the misreport
attack model by determining the probability that a malicious
switch receives (wins) the new traffic arriving in a time epoch
under the least load balancing algorithm.

Suppose the target is to win X% of the time epochs.
Specifically, we build a probabilistic model of the misreport
success by analyzing how the misreport frequency M , and the
misreported amount L (unit:Kb) at each time epoch affect X .
These two parameters define when to misreport and what to
misreport. Here we assume the attack has the same effects
when misreporting every 1/M second or misreporting every
second with the probability M ; we discuss the differences in
these assumptions in Section IV-C.

There are two cases where the malicious switch may win a
time epoch: misreport and honest report, which are exclusive.
When reporting honestly in a pool size N , we assume every
switch will win, on average, 1/N time epochs. The challenge
is to determine the probability of winning when misreporting.
This probability solely depends on L. So we classify the two
attack methods by L.

• Trivial Attack: In this case L = 0 at each time epoch of
the misreport. The goal of the adversary is to maximize
the winning probability under a given target. While this
will result in a very large winning percentage, it is easily
detectable. We include this as a point of comparison.

• Stealthy Attack: Recall that we approximate the future
load distribution of all the pool members by the load
distribution of the adversary in the first phase. In this

attack, the adversary samples the load L from the prior
distributions and determines the minimum load experi-
enced by a switch during the reconnaissance period. Here
we introduce another pair of parameters of sampling: p, a
cumulative probability bar of the load distribution ranging
from 0 to 1 and Lp, the load value at the corresponding
p. The bottom p fraction of load reports falls into the
interval between the minimum report load and Lp.
For example, Fig. 5 shows how the adversary determines
L by the learned load distribution and load minimum
shown in Fig. 3. If the cumulative probability bar p = 0.6
(y-axis), we find that the corresponding Lp (x-axis)
is around 3500Kb for most pool members. So Lp ≈
3500Kb. With p and Lp set, the adversary will randomly
select a misreported load value L such that L ∈ [history
load min, min(true load amount, Lp)], shown as the
horizontal bar in Fig. 5. We call this a stealthy attack
because it reuses the history load report and is harder
to detect. Generally speaking, the stealthy attack does
not report a zero load. The minimum load values are
50 ∼ 200 Kb/s in the traces. The smaller p is, the more
aggressive the stealthy attack is.
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Figure 5. Determine misreported amount from the learned load distribution
and load minimum

C. Win Rate Bounds

With the parameters defined, we give a bound on the target
win rate X in this section. This allows an attacker to pick
parameter values based on their target win rate.

Theorem 1. Let the adversary adopt the stealthy attack
method with parameters p and Lp. Denote P as the probability
that the malicious switch wins the time epoch. Assume the
misreport attack lasts for a sufficiently short time so that the
load distributions between pool members remain similar3.

3This matters because long attacks will reshape the load distributions of
the malicious switch and other honest switches, enlarging the KL divergence
between them and thus degrading the accuracy of the characteristics learned
during reconnaissance.
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Then

M

N−1∑
i=0

(
N − 1

i

)
1

i+ 1
(1− p)N−1−ipi ≤ E(P )

≤ M +
1−M

N
.

(1)

Proof. The winning probability is composed of two exclusive
cases: honest report and misreport. Denote the probability of
winning by misreport as P1 and that of winning by honest
report as P2. Formally, P = P1 + P2. Then

P1 ≤ P = P1 + P2 (2)

There are two cases in which the malicious switch can win
by misreporting. In the first case, the malicious switch is the
only switch that misreports the minimum load value so it wins
outright. In the second case at least one other switch reports
the same minimum load value and the malicious switch is
randomly selected. Denote the probability of the two cases as
P3 and P4 by sequence. Then P1 = P3 + P4.

P3 = Pr[
⋂
i ̸=N

(Rt
i > Rt

S1
)] ≥ M(1− p)N−1 (3)

P4 = M

N−1∑
i=1

(
N − 1

i

)
1

i+ 1
(1− p)N−1−ipi (4)

Note that 1− p is the probability that the the load report of
any other switch is larger than Lp. On the other hand, since
P (A ∩B) ≤ P (A) we have

P1 = Pr{misreport and win} ≤ M (5)

Assume the malicious switch receives its fair share of the traf-
fic when it reports honestly, that is, E(P2) =

1−M
N . However,

the higher average load brought by the misreport diminishes
the chances of winning by honest report because the load in
the honest switches is suppressed when the malicious node
receives extra traffic. Therefore

E(P2) ≤
1−M

N
(6)

By combining (2), (3), (4), (5), (6) we can obtain the result.

It seems that Thm. 1 may only give a loose upper bound
under ideal circumstances since the upper bound is unrelated
to p. However, it’s impossible to get a tighter bound in fact.

Theorem 2. M + 1−M
N is the least upper bound of E(P ).

Proof. Prove by a counter example. Assume there exists a
fixed constant ϵ > 0 such that E(P ) ≤ M+ 1−M

N −ϵ. Suppose
t = 1s and the duration of all the flows except N flows is less
than 1s. These N flows are identical and last for a long time.
Each of the N flows is assigned to an individual pool member
ahead of time and each has a non-zero load every second.
Then the bonus load or flows acquired by the misreport attack
would vanish in 1s. This shows the misreport attack has no
effect on the honest report stage. So E(P2) = 1−M

N . Since
every pool member has non-zero load due to long-lived flows,
the malicious switch may win every time it misreports if it

misreports 0. Then E(P1) = M and E(P ) = M + 1−M
N ,

giving a contradiction.

As a matter of fact, a tighter bound does not exist unless the
load distributions between pool members are no longer similar
after some time and the byte distribution over time follows
some pattern. As the misreport attack evolves, an unfair load
share would gradually move to the malicious switch, breaking
the initial assumption that the load distributions between pool
members are nearly the same. In that case p would be a
biased estimation of the actual percentile. Furthermore, the
byte distribution over time needs to follow some pattern so
that we can estimate the bias of p and measure the influence
the misreport has on the honest report stage, that is, P2.
Unfortunately, the traffic byte distribution does not follow
any short-range distribution or common distribution such as
uniform distribution [40]. Therefore, it’s hard to give a tighter
bound.

In practice, the honest win term in the upper bound (P2)
may be close to 0 if the malicious switch is highly successful
when it misreports because when reporting honestly its load
will be high. In this case we can approximate P with P1 as
shown in Sec IV-B3.

Although Thm. 1 has nothing to do with the reconnaissance
intuitively, it is the reconnaissance phase that allows the
attacker to sample from the load report history and thus
determine p. Now the adversary can set its target X , decide the
appropriate attack approach, compute the required misreport
frequency from Eq. (1) if necessary, and begin misreporting.
We can even obtain the actual number of misreports: the
product of M ×W , the time window of the attack.

Instead of targeting the win rate, a previous study [15]
targets the load directly. It bridges the gap between the win
rate and load by the assumption that an adversary will obtain
X% of the total flows and load in the system at steady state
if the adversary wins X% of the time epochs. They calculate
the expected load as:

E(load) =
1−M

N
+M(1− p)N−1

However, this claim doesn’t hold as shown in Sec IV-B.
Consequently, we formalize the misreport attack in terms of a
target fraction of time epochs where the compromised switch
wins in our model.

IV. EVALUATION

In this section we evaluate the proposed misreport attack
strategies via trace-driven simulations using backbone traffic
traces from the samplepoint-F of MAWI.

A. Simulation Setting and Evaluation Metrics

Experiments are carried out on a virtual SDN created in
Mininet [41], running OpenFlow 1.5, Open vSwitch 2.14.0,
and a Ryu controller [42]. The load balancer resides in the
Ryu controller. We run the Mininet SDN emulator and the
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controller in a network with the topology shown in Fig. 14. The
connections from every switch to the controller are hidden.

In these experiments, we treat a flow which appeared before
as a new flow if it has been idle for more than 10s as
is common in SDNs. As we mention in Section III-A, we
generate the traffic according to traces from MAWI. The
load report collection interval t = 1 second and the pool
size N = 10 according to [43], [44]. Different flows are
created by varying the source/destination port numbers. New
flows originate from the aggregation switch which represents a
common gateway from which flows split paths in the network.
The attacks are carried out by designating one edge switch
as the adversary. Note that our experiments with larger pool
sizes yield qualitatively similar results where the traffic load
is scaled proportionately.

To evaluate the misreport attack against load balancers
we use several metrics. First, we measure the direct impact
of misreport, i.e. how much load or how many flows are
routed to the malicious switch compared with the baseline
where the switch reports honestly. Then we evaluate the bound
formulation Eq. (1) under both the trivial and stealthy attacks
to understand to what extent an adversary can cause imbalance
in the load balancing pool and compare the accuracy of
our model with others’ [15]. Next, we measure how fast a
malicious switch can learn about network traffic patterns while
misreporting.

By analyzing the bonus load or flows brought by misre-
porting at a fine-grained level, the adversary is able to launch
more effective attacks against specific targets. We measure the
learning speed of the malicious switch in terms of two aspects:

• The increase in observations of specific target flows
defined by an IP source and destination pair by the
malicious switch compared to honest switches

• The increase in the number of individual IP source and
destination pairs the malicious switch observes compared
to honest switches

The first metric quantifies how misreporting helps capture
more target communications and the second characterizes the
capability of a malicious switch to learn more about the
communication patterns in the network [45].

B. Ability to Capture Flows and Load

In this section we evaluate the capability of the adversary
to capture flows and load, the accuracy of the misreport attack
model and the efficiency of the misreport attack.

1) Parameters setting: We randomly pick 16 daily traces
from MAWI in this group of experiments. We set p = 0.01
for the stealthy attack, which boosts the win rate lower bound
in Thm 1 to 0.92M . If p = 0.1, the lower bound is 0.41M ,
indicating that more than half of the misreports would fail in
the worst case5. We set the attack window W = 300s, which
means during the first 600 seconds the malicious switch reports

4The topology is representative. For example, the aggregation switch in the
figure can be any aggregation switch in a fat-tree topology and our goal is to
balance the traffic load among the edge switches in the pod.

5This numerical analysis implies again that for an effective and efficient
attack, the flexibility in parameter choice is limited.

honestly and records its own load report, and then determines
Lp. The misreport attack is launched in the last 300 seconds. In
this example, we set the target to be 30% win rate. The trivial
misreport frequency is set to M1 = 22% and the stealthy
misreport frequency M2 = 25%. These two frequency values
are derived from Thm 1 where both methods are expected to
achieve 30% win rate at most6.

2) Capturing flows and load: Fig. 6 and Fig. 7 show the
percentage of the flows and load captured by the malicious
switch in the last 5mins of each trace, respectively. The traces
are sorted by the flow number or load percentage of honest
reporting. As we can see, the compromised switch receives
23.3% of flows and 23.9% of load with the trivial attack and
17.8% of flows and 20.5% of load with the stealthy attack
while it only receives 8.2% of flows and 16.0% of load when
reporting honestly. In fact, the trivial attack effectively draws
more flows or load in every trace. The stealthy attack is less
effective. In 5 out of the 16 traces the stealthy attack does
not give rise to any increase in flow or load compared to
the honest case, however it never performs worse than honest
reporting. Neither attack achieves the given target. This is
because we implement the misreport attack by generating a
random number r ∈ (0, 1) each time and misreport if r < M1

or r < M2. Therefore, the misreport rate does not always
equal the fixed M1 or M2 and the attacks do not reach the
upper bound of the target.
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Figure 6. Flows captured by misreport in daily traces

3) Misreport attack model accuracy: We evaluate our
model accuracy in terms of win rate and compare it with
the model of [15] in this section. Fig. 8 and Fig. 9 give us
insight into Fig. 6 and Fig. 7 by showing the win rates (i.e. the
number of winning time epochs of a single switch compared
to the number of total time epochs), which allows comparison
with [15]. The average win rate of an honest switch is close to
10%, which agrees with the fairness assumption. However, the
win rate percentage doesn’t agree with the load percentage if
we look at the trivial/stealthy win rate and trivial/stealthy win
load, which contradicts the assumption in [15]. As we show
later, this happens because of the uneven load distribution over
time and the irregular distribution of winning time epochs of
a single switch.

6The trivial attack can be viewed as the special stealthy attack where p = 0.
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Figure 7. Load captured by misreport in daily traces
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Figure 8. Win rate with trivial misreport attack
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Figure 9. Win rate with stealthy misreport attack

We also notice that the win rate of an honest switch is
exceedingly low (e.g., 0.0%) in some special cases such as in
traces 0, 1 and 2. We reveal why this happens in Sec IV-B4. As
for the bound theorem, all the trivial attack win rates fall within
our bounds of prediction while [15] always overestimates. On
the other hand, the stealthy attack win rates deviate from our
bounds in 1/3 of the traces but our model is still more accurate
than [15]. Table I shows more details of three representative
traces; the two anomalies are marked in dark, which we will
explain in Sec IV-B5.

Specifically, we can approximate the win rate expectation
with the lower bound when p is sufficiently small as in the
trivial attack (p = 0) or when p = 0.01 as we use in the
stealthy attack. The malicious switch almost always wins the
epochs in which it misreports and almost never wins when
reporting honestly because of the high average load brought
by misreporting. As shown in Figs. 8 and 9, the trivial win rate
tracks the lower bound and the stealthy win rate is sometimes
below the lower bound for this reason.

Trace id 0 9 6
pool average load(KB/s) 2842 2720 5251
honest report flow no. 0.3% 11.7% 6.3%
honest report load 57.5% 7.2% 5.2%
trivial attack load 62.9% 15.5% 14.2%
stealthy attack load 57.5% 9.8% 12.1%
honest report win rate 0.0% 11.7% 6.3%
trivial misreport rate 18.3% 24.7% 25.3%
trivial win rate 18.3% 29.4% 26.0%

trivial win rate bound
18.3%
∼
26.5%

24.7%
∼
32.3%

25.3%
∼
32.8%

stealthy misreport rate 27.3% 21.1% 22.0%
stealthy win rate 0.0% 30.8% 21.7%

stealthy win rate bound
25.1%
∼
34.6%

19.3%
∼
29.0%

20.2%
∼
29.8%

Table I
WIN RATE PREDICTION(PARTLY)

4) Distribution of winning epochs over time: In this section
we explain why the assumption that winning X% of the time
guarantees winning X% of load does not hold and why it is
difficult to obtain an accurate estimation of win rate or load.

First, we look at the distribution of winning epochs over
time when the malicious switch reports honestly or misreports.
This sheds light on the change of load distribution over time
with/out the misreport attack from the time perspective. Fig. 10
show the load distribution over time of an honest switch
and the time epochs when the switch wins on two traces.
The switch wins short and bursty flows most of the time
in Fig. 10 (a) while the switch wins a single elephant flow
at some early epoch in Fig. 10 (b). In the latter case the
switch does not win any more epochs because the elephant
flow persists and keeps the switch load at a high level. The
fluctuation of load stems from the dynamic elephant flow. In
the former case, most spikes result from winning one time
epoch, while a few result from the dynamic flows themselves.

Fig. 11 and 12 illustrate the load distribution and winning
time epoch distribution of a malicious switch which launches
trivial and stealthy misreport attacks, respectively, on the same
trace as shown in Fig. 10 (a). An obvious difference from
the honest case is that there are few time epochs when the
switch wins without misreporting. The probability of winning
by reporting honestly during the second phase drops because
the average load becomes higher due to the previous successful
misreports. The malicious switch wins every epoch in which it
misreports in the trivial attack while it does not in the stealthy
attack. For example, the stealthy misreport attack at around
150s does not lead to a win in Fig. 12.
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Figure 10. Load report of a honest member winning different flows
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Figure 11. Load reports with the trivial attack.
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Figure 12. Load reports with the stealthy attack.

We find that the winning time epochs are not uniformly
distributed when the switch reports honestly or misreports.
Also, the load distribution over time is irregular as shown
in Fig. 13. These two facts indicate that the switch which
wins at a lucky time epoch during which flows with higher
load arrive may obtain a heavier load compared with the other
switches. In fact, for more than half of traces in the dataset,
there are one or two members that receive 17% ∼ 60% of
the total load, leaving other members with less than 10%
of the total load as shown in row 4 of Table I and Fig. 3.
From another perspective, the load distributions across the
pool balanced by the least load algorithm take a long time
to converge to the equilibrium where all loads are identical

or similar. Fortunately, this chaos opens up a time window
for the misreport attack because low loads, whether faithful
or not, may exist for some time. In summary, the uneven
winning time epoch distribution and irregular load distribution
over time leads to the fact that winning X% of the time does
not guarantee winning X% of load.
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Figure 13. Uneven load distribution over time

5) Joint analysis of load and win rate: Here we analyze
the relationship of the load and win rates further and address
the anomalies in Table I. Looking deep into Fig. 8 and 9 we
find that the load value may be dramatically different while
the win rates are close. For example, in trace 10, the trivial
attack captures 15% of the total load while the stealthy attack
captures 25% though the stealthy attack win rate resembles
the former. This further verifies the existence of lucky and
unlucky time epochs, that is, the uneven load distribution over
time.

Now we turn to anomalies in Table I. The extremely
low honest win rates and zero stealthy attack win rates for
some traces such as trace 0 can be attributed to the uneven
distribution of flows and loads across the switches shown in
row 4 of Table I and Fig. 3. Take trace 0 in column 2 for
instance; the contrast between the few flows and heavy load
suggests the existence of elephant flows, considering the fact
that the flow size distribution follows a pareto distribution.
As shown in Fig. 10 (b), elephant flows won early result
in consistently high load, which prohibits the switch from
winning again. In this edge case, a malicious switch cannot
accurately approximate the load of other switches with its own
for a stealthy attack (even with an extremely small p), and thus
the attack fails. Similarly, if the malicious switch happens to
be the outlier in Fig. 3, it will win additional load with a trivial
attack but nothing with stealthy attack.

To understand the anomaly in Column 3 of Table I, we
need the following lemma. The slight deviation in trace 9 can
happen because Thm 1 only bounds the expectation of the win
rate. Pr{win rate ≥ 1−M

N +M} > 0 may hold by Lemma 3
when the expectation equals the upper bound.

Lemma 3. Suppose we have a probability space S and a
random variable X defined on S such that E(X) = µ. Then
Pr{X ≥ µ} > 0 and Pr{X ≤ µ} > 0.

Proof.
µ = E(X) =

∑
x

xPr{X = x}

9



where the summation ranges over all the values in the range
of X . If Pr{X ≥ µ} = 0, then

µ =
∑
x

xPr{X = x} =
∑
x<µ

xPr{X = x}

<
∑
x<µ

µPr{X = x} = µ

giving a contradiction. The other case is similar.

Essentially, it is the flows of various loads and diverse arrival
pattern of the flows that cause the uneven load distribution
over time. Eventually, switches observe a slight load imbalance
due to the uneven load distribution over time and the uneven
distribution of their winning time epochs.

6) Misreport efficiency: In this section we explain why the
upper bounds seems loose in Fig. 8 and 9 and prove that the
misreport attack is highly efficient.

For the win rates that fall into the estimated interval, the
upper bound seems loose in most cases such as traces 6 and
10. This is because the estimation of the win rate by honest
reports is not accurate. To have a better idea of the bias, we
explore the three misreport cases below and the effects that
the misreport has on the win rate of honest reports in the
last 5mins. There are three cases when the malicious switch
misreports at one time epoch:

• Case 1: either a misreport and honest report would win
• Case 2: neither a misreport nor honest report would win
• Case 3: a misreport changes the result and wins
When p = 0.01, M1 = 22.2%, M2 = 24.6% and N = 10,

the average probability of case 1 is 4.7%(4.3%) for the trivial
(stealthy) attack, and that of case 2 is 0%(3.0%), which
demonstrates the high efficacy of the misreport attack. On the
other hand, the average win rate of the honest report drops
to 4.2%(2.7%) when trivial (stealthy) attack exists, while the
expectation of the honest report win rate is 7.7%. Generally
speaking, the high average load brought by misreporting
makes it hard to win by honest reporting.
Takeaway: Misreport attacks can control the traffic to a high
degree by drawing a significant fraction of the traffic to the
malicious switch. A stealthy attack has less efficacy than the
trivial attack, which can bring more load or flows even in the
edge cases with the price of higher detection risk. Thm. 1
bounds the attack win rate well but does not hold on some
cases. The attack is highly efficient except for edge cases.

C. Ability to Learn the Traffic Faster
In this section we show the extent to which misreporting

can accelerate learning about the network traffic and how the
parameters affect this capability.

1) Parameters setting: We pick four 30-min traces of the
same day from MAWI, starting at 9am, 12pm, 3pm, and 6pm
since the link of MAWI samplepoint F observes significantly
more load and flows during the day than the night7. We set
the attack window W = 900s. The malicious switch reports
honestly in the first 15 mins and misreports in the last 15 mins.

7We cannot carry out any experiment on a longer timescale such as weekly
due to the anonymization of the dataset. We cannot repeat the experiments on
other datasets because they do not have a two-day or three-day long backbone
traffic trace.

2) Learning specific network communications: We study
how much the malicious switch learns about specific network
communications in this subsection. Set p = 0.01. Fig. 14
shows that given an IP source and destination pair, how
many flows that belong to this IP pair are observed by the
malicious switch under different circumstances. Specifically,
we misreport every 4 seconds (25% of time) and start from
two different initial time epochs to differentiate the misreport
timing. The IP pairs are the ten with the highest frequency.
We can tell that the misreport attack enables the malicious
switch to observe many more flows per IP pair. The stealthy
misreport attack has performance similar to the trivial attack
when p is small, e.g., 0.01. The misreport timing makes little
difference when the misreport frequency is the same and the
attack is carried out uniformly over time. Here the trivial
attack can capture nearly 100% of the flows of the ten IP
pairs because the other pool members do not get starved and
continue to report a non-zero load for a long time due to long-
lived elephant flows.
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Figure 14. Flow number observed per IP pair
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Figure 15. Ability to observe more traffic per IP pair: average over pairs.

Fig. 15 shows how the two parameters: misreport rate M
and the percentile p affect the switch’s ability to observe more
traffic. In the figure, we investigate three cases: stealthy attack
100% of the time, stealthy attack 25% of the time and honest
report on two traces. Recall that a smaller p results in the
misreported load being closer to the minimum observed load
and this is expected to result in a higher captured load. As
we can see, p plays a less important role when the misreport
frequency is low, which implies the adversary can set p higher
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Figure 16. Ability to observe more flows of a specific IP pair

to be more stealthy with little cost when the misreport rate is
low. Note that the choices of M and p are dependent. Given
a fixed target, the choice of a smaller p will result in a higher
misreport success probability and requires a smaller misreport
frequency. But reporting a low load consistently is dangerous
in terms of being detected. The inverse is also true. That is to
say, there is a natural tradeoff between misreport success and
detection risk.

Fig. 16 shows that the number of flows of a specific IP pair
the malicious switch observes grows linearly with respect to
time with different settings. The line labeled “whole trace”
shows the ground truth when the switch wins every time
epoch, so it represents the ideal case with 100% observability
of the network and perfect learning. When p is sufficiently
small like 0.01, the learning rate, i.e., the slope, correlates
with M linearly and scales with perfect learning by a factor of
M because the switch always wins when misreporting which
dominates the win cases. So when M = 50%, it observes 50%
of the traffic and the learning rate is 50%. When p is larger
like 0.2, the malicious switch will not always win when it
misreports and may win on occasion when reporting honestly.
As shown, even if the malicious switch does not capture more
flows than average, it has access to the flows of the IP pair
when misreporting while it does not when it reports honestly.
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Figure 17. Ability to observe more individual IP pairs.

3) Learning communication patterns: While Section IV-C2
provides insights on how misreporting helps capture particular
network communications, this part offers a unique perspective
of the role misreporting plays in learning the network com-

munication patterns by looking at the number of unique IP
pairs observed. Fig. 17 reveals that the number of individual
IP source and destination pairs observed by the malicious
switch increases linearly with respect to the misreport rate
of the stealthy attack. The impact of p is amplified at higher
misreport rates in this case.
Takeaway: Misreporting enables a malicious switch to ob-
serving more flows per IP pair and more individual IP pairs.
The individual IP pairs seen by the switch increases linearly
with respect to the misreport rate M and the significance of
p becomes more obvious with greater M .

V. STEALTHINESS VS. DEFENSES

In this section we show how our proposed attack is stealthy
against three basic approaches: a threshold detection algo-
rithm [5], an algorithm based on Kolmogorov–Smirnov (KS)
tests and one based on change point detection. When evaluat-
ing stealthiness in this section we set N = 10,M = 25% and
use the 15-min daily traces.

We define an attack as being stealthy if follows: 1) the
probability that the attack is detected is much smaller than
that of trivial attacks, and 2) the malicious switch behavior
is not distinguishable from a percentage of honest switches
where the percentage is an acceptable false alarm rate. We
define the detection rate as the percentage of misreports that
are detected, and the false alarm rate as the percentage of
honest reports that are wrongly detected as misreports.

Prior work [15] gives a comprehensive introduction to the-
state-of-art defense mechanisms as mentioned in I-A and ex-
plains why most of the approaches are not effective against the
specific misreporting attack against ingress/egress switches.

One approach reviewed in [15], based on threshold de-
tection [5] is effective against the trivial attack but not the
stealthy attack. This approach provides two layers of defense:
1) it periodically checks whether the throughput of any port is
below a threshold indicating it is likely reporting a low load
value, and 2) it examines the consistency of the load reports
of switches along a flow routing path. The latter test cannot
identify the malicious ingress/egress switch in a flow path that
adds/drops packets to influence the load report similarity since
it relies on STATS-REPLY from untrusted switches along the
flow path to calculate the inconsistencies.
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Figure 18. Threshold misreport detection evaluation for different switches

To use the threshold test, care must be taken in setting
the threshold. If the threshold is set too low, then malicious
switches that generate stealthy misreports can report values
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Figure 19. Distribution of load reports collected every second from a 50-
member load balancing pool.

that are over the threshold and still gain large amounts of
traffic. If the threshold is set too high to detect these stealthy
misreports, the honest switches with naturally occurring low
load will be erroneously detected as misreporting.

Fig. 18 shows how the threshold detection [5] works against
misreporting attacks under different parameters. A threshold
can be set that always detects the trivial attack with a false
positive rate of 0 because honest switches rarely report no
load, so the threshold can be set at a very low value and still
detect the trival attack that reports 0 load. Since the trivial
attack is easy to detect, we do not consider it further.

When using the threshold test to defeat a stealthy attacker,
from the defender perspective, it is rational to pick a load
threshold according the cumulative probability distribution of
traffic through honest switches as shown in Fig. 3 so that
only a small fraction of honest switches will be classified as
malicious under normal conditions. For example, if we pick
600 Kb as the threshold in Fig. 18 (a), if the malicious switch
sets p = 0.2, 50% of the misreports can be detected while the
average false positive rate is 10%. Because the misreport rate,
M = 25%, the malicious switch is detected about 20% of the
time. While this may seem effective, this threshold is harmful
to many honest switches.

Recall that while some honest switches carry elephant flows,
others are assigned small “mice” flows due to the uneven
distribution of traffic. In Fig. 18 (b) we show the false positive
rate for an honest switch that carries mice flows and as can be
seen, this honest switch is classified as malicious more than
80% of the time which is four times the rate as the malicious
switch.

Now we evaluate our stealthy attack against a KS test to
compare the load report distribution of two switches in the
same pool. In [15] the authors used a KS two sample test and
median test to compare the load distribution of the potential
malicious switch and the honest one. In this paper we have
shown that the median distribution of traffic on flows, while
similar across many switches, is not a good measure because
of the existence of elephant flows. To see why please refer to
Fig. 19. In this Fig it is clear that 3 out of the 50 flows deviate
by more than 100% from the 50-percentile carried load of the
remaining 47 switches. A malicious switch, with p = 0.25 and
M = 0.25 can capture twice the normal load it would if it

reports honestly, but its distribution is still be consistent with
the distributions of these honest switches because it bounds
its misreports based on its reconnaissance.

We also perform the KS two sample test between the load
report cumulative probability distribution of a single edge
switch f(x) and the aggregation switch g(x) when all the
switches are honest. We conclude that with 99% confidence for
only around 10% of the honest switches f(x) = g(x), while
f(x) ≥ g(x) for 96% of the honest switches. This happens
because of the long-living elephant flows which result in heavy
load on 5% of the switches. This implies that this comparison
will have high false positive rates even for the honest case and
is not an effective defense.

The last defense mechanism we evaluate is online change
point detection. For example, we can track the load reports of
a single switch and tell if there is a sudden change that may be
a misreport. Fig. 20 shows the load report time series anomaly
analysis by an online change point detection algorithm [46].
The load reports are collected from a malicious switch which
records the load report in the first 10 mins and misreports
in the last 5 mins. Only 5 spikes of anomaly scores are
presented which means the probability that the stealthy attacks
get detected is 6.7%.
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Figure 20. Ability to evade change point detection

Takeaway: The advantage of the stealthy attack is that the
attacker can control when it receives the extra load but still
appear to be similar to a percentage of honest switches where
this percentage is an acceptable false positive rate.

VI. CONCLUSION

In this paper we defined and analyzed an attack on SDN load
balancers. The attack includes a reconnaissance phase during
which an attacker that has compromised a switch learns traffic
distributions in a network and sets parameters, and an attack
phase during which the attacker misreports its traffic load.
We develop bounds on the win rates of misreporting switches
based on which adversaries can set their attack parameters.
We show that despite Internet traffic having uneven traffic
distributions, these attacks are effective and allow adversaries
to accelerate learning network traffic characteristics.
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