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Abstract—The Tor anonymity network allows users such as
political activists and those under repressive governments
to protect their privacy when communicating over the in-
ternet. At the same time, Tor has been demonstrated to be
vulnerable to several classes of deanonymizing attacks that
expose user behavior and identities. Prior work has shown
that these threats can be mitigated by leveraging trusted
execution environments (TEEs). However, previous proposals
assume that all relays in the network will be TEE-based—
which as a practical matter is unrealistic. In this work,
we introduce ParTEETor, a Tor-variant system, which
leverages partial deployments of TEEs to thwart known
attacks. We study two modes of operation: non-policy and
policy. Non-policy mode uses the existing Tor relay selection
algorithm to provide users incident security. Policy mode
extends the relay selection algorithm to address the classes of
attacks by enforcing a specific TEE circuit configuration. We
evaluate ParTEETor for security, performance, and privacy.
Our evaluation demonstrates that at even a small TEE
penetration (e.g., 10% of relays are TEE-based), users can
reach performance of Tor today while enforcing a security
policy to guarantee protection from at least two classes of
attacks. Overall, we find that partial deployments of TEEs
can substantially improve the security of Tor, without a
significant impact on performance or privacy.

1. Introduction

Anonymity networks have existed for decades to pro-
vide users enhanced privacy when browsing the inter-
net [10], [13], [36], [42]. The onion routing network
Tor [11] is a prominent example that allows users to
access/host services anonymously and bypass censorship.
Entirely non-profit, Tor relies on people around the world
volunteering their computing resources to host relays,
which route users’ traffic through the network via unique,
random paths known as circuits. Currently, Tor has over
2 million users and over 6000 public relays in use [35].

While Tor enjoys widespread use, vulnerabilities in
its infrastructure continue to emerge and threaten user
privacy. Attempts at exploiting protocol-level informa-
tion (e.g., circuit identifiers) have been successful in
deanonymizing users; known classes of attacks on Tor
include collusion [7], [34], fingerprinting [26], circuit
identifier exploitation [8], and bandwidth inflation [6].
Ultimately, all of these attacks exploit the trust that is
inherently placed in relays to safely route users’ traffic.
Developing a solution for effectively preventing such at-
tacks is thus critical for the long-term success of Tor and
the guarantees provided to users that rely on Tor.

Prior efforts like SGX-Tor [25] have used trusted
execution environments (TEEs) to provide a means for
trusting relays. However, the system assumes that every

relay in the network is TEE-based. As the Tor network is
entirely volunteer, and adopting TEEs necessarily requires
software re-design and, for some relay operators, hardware
changes, this greenfield assumption is at odds with practi-
cal considerations. Coordinating a transition to TEE-based
relays among unassociated relay operators is infeasible,
and thus this assumption is prohibitive. In practice, TEE-
based solutions should tolerate partial rollout as relay
operators begin adopting TEE-capable hardware and tran-
sitioning relay software. Thus, understanding the security
guarantees of leveraging TEEs in partial (or incremental)
settings will be pivotal to improving the landscape of
anonymity networks such as Tor.

In this paper, we introduce the ParTEETor system
which provides security in partial deployments of TEE-
based relays in the Tor network. Two modes of operation
are provided: non-policy and policy-based. Non-policy
mode allows users to benefit from TEE-based relays where
they are available using the current Tor relay selection
algorithm. Policy mode allows users to mandate specific
TEE circuit configurations to guarantee protection from
different classes of attacks.

As an initial means of evaluating partial deployments,
we create a taxonomy of classes of attacks on Tor. We then
map those classes to TEE circuit configurations that miti-
gate them. The identified configurations are designated as
security policies. We introduce an extended relay selection
algorithm that selects circuits that meet a client-specified
security policy.

Delving further, we develop a simulation of
ParTEETor using Python to evaluate its security,
performance, and privacy over four realistic deployment
scenarios of TEEs. We evaluate security as the general
TEE protection circuits receive with no security policy
enforced. To evaluate performance, we use measurements
provided by the Tor directory consensus for expected
bandwidth of circuits when enforcing a security policy.
Privacy is evaluated as the resulting reduction in circuit
availability when enforcing a security policy.

We find that non-policy mode offers protection from
at least two classes of attacks to more than 50% of
circuits if at least 20% of relays are TEE-based. A possible
consequence of policy mode is increased congestion at
TEE-based relays if there is a limited penetration of TEEs.
However, we still find that with only 10% of TEE-based
relays, users reach an expected bandwidth of 8016.1 KB/s,
meeting performance seen in Tor today while obtaining
protection from two classes of attacks. While enforcing a
security policy also reduces the space of available circuits,
we find the reduction in this space still meets the privacy
guarantees observed in former versions of Tor.

Our work shows that the use of TEEs in Tor is both
practical and effective. We hope that our work encourages
relay operators to begin taking concrete steps towards



using TEEs to reinforce the long-term success of Tor and
anonymity networks.

2. Background

Tor Network. Tor [11] is a volunteer-based anonymity
network that uses onion routing [14] to conceal a user’s
internet activities. The main components of Tor are clients,
relays, directory authorities, and onion services. Imple-
mented as an overlay network, Tor encapsulates client
TCP streams in multiple layers of encryption and routes
them through several intermediate servers between a
source (client) and destination (website). No single com-
ponent is aware of both the source and destination, thus
allowing clients to remain anonymous to the wider internet
(i.e., to relays, web servers, and other third-parties).

A user’s Tor client establishes a circuit to send data
by choosing three (or more) relays during relay selec-
tion. Ephemeral, pairwise encryption keys are negotiated
between the client and each relay. To anonymize data
for transmission, the client divides the data into fixed-
size cells and successively encrypts every cell under each
key, beginning with the last relay’s key, followed by the
middle, then the first. During transmission, each relay
decrypts the cell to remove their layer of encapsulation
before forwarding it to the next relay in the circuit. A relay
is therefore only aware of the identities of components
immediately prior and after itself in the circuit.

Directory authorities are a subset of ten relays in the
network that are trusted to maintain the overall state of
the network. Their central responsibility is upholding the
directory consensus document, a document containing key
information about each relay (e.g., public keys, bandwidth,
flags, etc.) that clients query during relay selection. The
directory authorities scan the network periodically to up-
date the consensus document.

Onion services (formerly known as hidden services)
are special sites and services only accessible through Tor.
The key components of onion services are the introduction
points, which are anonymous contact points of the site
hosts, and rendezvous points, which connect anonymous
circuits from the client and the site host. Clients first
communicate with the introduction point of the onion
service to identify a rendezvous point. Onion services then
have their inbound traffic routed through a circuit to the
rendezvous point. Clients also establish a circuit of their
own to the rendezvous point.

Trusted Execution Environments. Trusted execution en-
vironments (TEEs) are hardware-based security primitives
that protect the confidentiality and integrity of code and
data running in untrusted environments (e.g., on out-
sourced servers) [24], [28], [29]. TEEs protect confiden-
tiality primarily through access-mediation to protected
memory regions containing sensitive code and data, and
additional CPU modes that restrict the type and scope
of operations that can be performed by code running
either within the context of the TEE or outside of it.
In effect, this ensures complete isolation from untrusted
third-parties while processing sensitive data. Attestation
capabilities are also provided to allow clients to verify the
integrity of the code running inside the TEE. This grants
clients assurance of the behavior of the code running
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Figure 1: ParTEETor, a partial deployment of TEE-
based relays in the Tor network.

on machines they do not physically manage. TEEs have
begun to see wide adoption for securing cloud-based web
services [9], but also for improving the security of Tor.

SGX-Tor. The SGX-Tor system demonstrated that TEEs
provide an effective means to defend against several
longstanding threats to Tor [25]. This was realized by
porting the Tor software to run within a TEE. This ensures
that sensitive data is kept secret and functions processing
sensitive data cannot be tampered with. To enable commu-
nication with the outside world, the host that the TEE runs
on acts as a proxy and forwards messages to endpoints
specified by the TEE (e.g., to clients and other relays in
Tor). Any data that requires persistence on the relay can
then be sealed using a private key burned into the proces-
sor hardware and only accessible by the TEE code [18].
More broadly, the confidentiality, integrity, and attestation
capabilities of the TEE thus ensure the trustworthiness
of the relays in the network, preventing an otherwise un-
trustworthy relay from leaking sensitive information like
circuit IDs, cell commands, router descriptors, or private
encryption keys used for communication with clients. This
effectively reduces the threat surface within Tor to only
network-level adversaries.

3. System Overview

SGX-Tor [25] laid the foundation for integrating TEEs
into Tor. However, it was limited by the assumption that
every Tor client and relay has a TEE.

This greenfield assumption is impractical as it implies
the entire network will be replaced, instead of allowing
for compatibility of both TEE and non-TEE relays. While
many systems already have the hardware to support TEEs,
adoption still requires software re-design. For some relay
operators, adoption could also mean hardware changes.
Coordinating a transition to all TEE-based relays among
unassociated relay operators is infeasible, and thus this
assumption is prohibitive.

To stimulate adoption of TEEs by the broader Tor
community, our central goal is therefore to construct a
system that leverages partial deployments of TEE-based
relays to enable users security, performance, and privacy.

ParTEETor. Based on the existing Tor design, the
ParTEETor system (Figure 1) integrates TEEs in some
relays—varying from very few to nearly all (See Sec-
tion 6).



While one might expect to need hardware changes in
order to use ParTEETor, this is not necessarily the case.
Implementing TEEs is standard practice now for general
purpose CPUS. Popular manufacturers like Intel, ARM,
AMD, and Apple all utilize TEEs in their CPUs [2]–[5],
[17]. Therefore, many relay operators will only need to
install a binary which utilizes their already existing TEE
in order to use ParTEETor.

Like SGX-Tor, the relay code of TEE-based relays is
moved into the TEE, thereby providing data and operation
integrity and confidentiality guarantees. Moreover, attesta-
tion is used to ensure the integrity of the implementation
(code). Thus, when a relay wishes to be available to clients
as TEE-based, it must first be attested by the directory
authorities, and re-attested at some periodicity to ensure
the ongoing integrity of the relay.

ParTEETor operates in one of two modes: non-
policy and policy (See Section 5). The non-policy mode
is a straightforward application of Tor with the addition of
TEEs being adopted by select existing relays. The relay
selection algorithm in this mode does not change, allowing
for circuits to incidentally benefit from the availability of
TEE-based relays in the network. This mode represents
the case where no changes to the client are required, as all
changes to behavior exist solely in the TEE-based relays.

ParTEETor’s policy mode extends non-policy mode
by incorporating security policies into the relay selection
algorithm. When a client connects to the network, it will
select its circuit based on its desired security policy, which
defines which relays in a circuit are TEE-enabled (See
Section 4). The security policy enables users to choose
their protection status from each class of attack based
on the perceived threats. This mode requires updating
the client to impose the selection of TEE-based relays
in circuits.

Threat Model and Assumptions. We assume a similar
threat model to other TEE-based systems [9], [25]. Ad-
versaries are exploiting the required trust placed on relays
to safely route traffic through the network. An adversary
may be a compromised entry, middle, or exit relay in the
network. They may attempt to corrupt or extract private
information from the relay, such as circuit IDs or cell
commands. However, we assume that the confidentiality
and integrity of any code and data processed within the
TEE is protected. We do not trust software running outside
of the TEE (i.e., the operating system acting as a proxy for
the TEE). We also assume that users trust their Tor client
and therefore do not consider malicious client attacks [12],
[21], [32]. We assume that all directory authorities are
trustworthy, as these relays are operated by trusted parties
in the Tor community. We note the limitations of TEEs in
Section 7.

4. Mapping Attacks to Circuit Protection

In order to understand what security policies
ParTEETor needs to support, we need to understand the
relationship between TEE-based relays and their place-
ment in circuits to protect against the known classes of
attacks on Tor users (Table 1). To do this, we present
a security analysis on the known classes of attacks in
Tor. These attacks were identified by prior work as the

universal examples for each known attack class [25].
Figures detailing each attack can be found in Appendix A.

As not all attacks require collusion of every relay in
a circuit, ensuring a TEE-based relay is present in every
position of a circuit would not be necessary for protection
from each attack. Prior work provided a preliminary analy-
sis on the minimum requirement of TEE-based relays [25];
we expand on their efforts by detailing how the specific
TEE placement in a circuit provides protection against
each attack. We breakdown each attack to identify the
specific position (i.e., distinct relays in a circuit) where
TEEs are required in a circuit to ensure mitigation.

4.1. Replay Attack

Pries et al. propose the Replay Attack [34], where an
adversary duplicates Tor cells, causing decryption errors.
As Tor uses AES-CTR for cell encryption, each relay and
client maintain a counter when encrypting and decrypting
along a circuit. Duplicating a cell will result in the counter
being additionally incremented at the relays decrypting it,
which causes the client and the relays’ counters to be out
of sync. This will then cause a decryption error at either
edge of the circuit.

This attack can take two approaches: both the entry
and exit relays to be malicious, or the entry is malicious
and an adversary is eavesdropping on the connection
between the exit relay and the destination. The initial
premise is a malicious entry relay duplicates a relay cell
before forwarding it down the circuit. Once the duplicated
cell reaches the exit relay, the integrity check will fail
and cause the circuit to be torn down. A malicious exit
relay working with the entry can confirm the user and
the destination, as this error was forced by the entry
for the exit to recognize. A malicious eavesdropper, on
the other hand, will notice the TCP stream being cut
off unexpectedly, confirming the connection between the
entry and the eavesdropper.

Protection. The Replay Attack [34] relies on malicious
relay behavior. Specifically, the entry relay must duplicate
the target cell to cause the decryption error. The guarantee
of source code integrity with a TEE prevents this behavior.
Protection from this attack requires a TEE-based entry
relay. It is not necessary to require both a TEE-based
entry relay and exit relay. If the entry relay is TEE-
based, we can guarantee this relay will not duplicate any
cells, meaning any adversary at the exit relay will have
no decryption error.

Considering the variation of the attack where the entry
relay is malicious with an eavesdropper on the exit-to-
destination link, a TEE cannot prevent this eavesdropper.
This is the reasoning behind requiring the entry relay to
have a TEE and not the exit: preventing the duplication
of the cell from ever taking place at the entry, thereby
impeding the eavesdropper from noticing any unexpected
dropped connection.

4.2. Onion Services Attack

Biryukov et al. propose an onion services attack [7]
which relies on a malicious entry or middle relay, and
rendezvous point to reveal the location of onion services.



Attack Adversary Relays Adversarial Goal TEE Requirement
Replay Entry and Exit Deanonymize users Entry
Onion Services Entry and Exit Deanonymize onion services Exit
Fingerprinting Entry Deanonymize users and onion services Entry
Bad Apple Exit Deanonymize users Exit
Bandwidth Inflation Entry, Middle, and Exit Increase relay’s usage in circuits Entry, Middle, and Exit

TABLE 1: Required TEE placement to mitigate attacks against Tor.

The adversary intends to confirm they are running the
entry relay for an onion service by recognizing a pattern
of cells sent by the rendezvous point. When the adversary
requests to be introduced to the onion service as a standard
Tor user, they provide their malicious rendezvous point
to the onion service. The onion service then constructs a
circuit to the rendezvous point, where the adversary sends
a known quantity n (e.g. 50) of padding cells down the
circuit, followed by a destroy cell.

If the adversary is the entry relay in this circuit to the
rendezvous point, they will receive n+3 cells in total, two
extended cells from circuit establishment, n padding cells,
then one destroy cell. This scenario confirms the adversary
is the entry relay of the onion service, allowing them to
reveal the identity of the onion service as the hop prior
to them. If the adversary is only the middle relay, it will
receive n+2 cells total (one less extended cell), confirming
the hop prior is the entry of the circuit (we will disregard
this scenario from here on, as compromising the entry
relay following this scenario would require additional
attacks outside of this).

Protection. The Onion Services Attack [7] requires the
rendezvous point to maliciously send padding cells down
the circuit. However, the integrity guarantee of TEEs
prevents this behavior. The attack also requires a malicious
entry in order to recognize the padding cells and count
the total cells sent. Thus, a TEE-based entry relay alone
does not prevent this attack, as a network-level adversary
can still observe the number of cells sent via analysis
of the quantity and size of IP packets. To prevent an
adversary from inferring this link, the act of transmitting
extra padding cells must be prevented. This requires a
TEE-based relay acting as the rendezvous point, which
translates to the exit relay in the circuit.

4.3. Fingerprinting Attack

Kwon et al. propose a fingerprinting attack [26] which
is able to exploit circuit level identifying information to
reveal if a given user is visiting an onion service, or the
location of the onion service itself. This attack requires
the adversary to be acting as the entry relay.

The adversary makes note of three different properties
of the traffic to and from onion services: incoming and
outgoing cells, duration of activity, circuit construction
sequences. Based on these properties, introduction point
circuits are first sought out, meaning circuits between a
client and introduction point for an onion service. Once
evidence of these circuits is found, the adversary monitors
the users of these circuits further to determine rendezvous
point circuits, either between a client or an onion service.
The activity monitored can effectively determine if the
adversary is an entry relay for an onion service or a user

visiting an onion service. In the event the relay is acting
as the entry for an onion service, the location of the onion
service is now identified.

Protection. The Fingerprinting Attack [26] requires the
entry relay to be malicious to recognize patterns of cells
being sent across circuits. Additionally, the authors claim
the attack can be implemented by someone eavesdropping
on the connection between the user and the entry relay.
This attack is passive in that it only requires observing
circuit identifying information, such as circuit IDs and
number and sequences of cells, to distinguish different
circuits. TEEs’ guarantee of confidentiality prevents this
information from being revealed to a malicious entity on
the relay. A malicious host or entity eavesdropping on the
connection will only see IP packets being sent.

Protection from this attack requires a TEE-based entry
relay. This ensures the entry cannot recognize what traffic
corresponds to specific circuits. An important note is that
TEEs only reduce the adversary to a network level. This
attack could still be possible via analysis of IP packets in
an attempt to distinguish circuits.

4.4. Bad Apple Attack

Tor multiplexes multiple TCP streams over one circuit.
In the event a user is visiting a website, which may require
multiple streams to fetch all the objects, these streams will
be sent over the same circuit. Subsequently, if an exit relay
is able to identify the source for one of the streams, it now
knows the source of all the other streams along that circuit.
The Bad Apple Attack [8] exploits this design choice.

Targeting users of peer-to-peer (P2P) file sharing ap-
plications like BitTorrent, this attack requires the adver-
sary to host a malicious exit relay, monitor users of P2P
applications, and host a malicious peer for the applica-
tions. Blond et al’s attack exploits the fact that 70% of
users accessing BitTorrent only use Tor to request peers,
then connect directly to the peer via TCP.

When a user’s circuit contains the malicious exit relay,
and the user is requesting a list of peers to contact,
the exit relay can modify the returned list to include
their malicious peer. Then, when the user connects to the
malicious peer outside of Tor, the user exposes their IP
address (by design of P2P applications). The adversary
operating the relay can then match the traffic to its clearnet
peer to clients it sends data back to as an exit relay.
Furthermore, the source of all other multiplexed streams
of this particular exit relay’s circuit are now exposed.

Protection. The Bad Apple Attack [8] protection is
straightforward. This attack relies on the exit relay in
a circuit to act maliciously. Moreover, no collusion is
required for this attack, but the knowledge of circuit level
information such as circuit and stream IDs is required



to be able to distinguish between different circuits and
streams. TEEs protect against the malicious relay behavior
through their integrity guarantee. TEEs also hide circuit
identifying information such as circuit and stream IDs.
This prevents the adversary from recognizing different
circuits through IDs. For these reasons, requiring the exit
relay in a circuit to be TEE-based ensures protection under
TEE capabilities. An important note is that the adversary
is reduced to a network level, as they can still attempt to
recognize different circuits and streams through IP packet
inspection.

4.5. Bandwidth Inflation Attack

Relays are selected for circuits weighted proportion-
ally to their bandwidth. This creates an incentive for
having higher bandwidth, as that relay is now more likely
to be used in circuits. From an adversarial perspective,
this is beneficial in their task of controlling entry and
exit relays of a circuit [6]. Tor adopts the approach of
bandwidth scanners to validate the reported bandwidth.
A portion of the directory authorities are bandwidth au-
thorities and will periodically scan the bandwidth via
bidirectional probing. The published bandwidth of the
relay is the median of at least three of the bandwidth
authorities’ measurements [23].

Bandwidth scanning is an improvement in preventing
misreporting, but doesn’t defeat the attack entirely. As
relays are able to recognize the directory authorities that
scan for bandwidth, relays can provide more bandwidth
to these streams by throttling the bandwidth they allow
for the rest of its streams. This can effectively convince
the directory authorities that the relay is capable of higher
bandwidth which in turn increases the probability it will
be chosen for circuits, as shown by Biryukov et al. [7].

Protection. Relays using TEEs self-report their band-
width [25] in place of scanning. With this, any manip-
ulation to the bandwidths being reported to the directory
authorities would mismatch the bandwidth reported by the
trusted TEE relay. As this attack is specific to each relay,
protection requires all (entry, middle, and exit) relays in
a circuit to be TEE-based.

Requiring the entry and exit relays in a circuit to be
TEE-based would be an effective mitigation if considering
bandwidth inflation as a means to leverage more attacks.
Most attacks discussed require collusion, except for Fin-
gerprinting [26] (malicious entry relay) and Bad Apple [8]
(malicious exit relay). Requiring all relays in a circuit to
be TEE-based would then not be necessary.

5. ParTEETor

ParTEETor is driven primarily by two components:
a client’s security policy and the extended relay selection
algorithm. Additionally, how TEEs are deployed within
the system (i.e., the deployment scenario) will have sig-
nificant impact on its effectiveness. We discuss each aspect
of the system and its use below.

5.1. Circuit Security Policy

A client’s security policy specifies which attacks a
circuit must provide protection against. Concretely, it

Function RelaySelection
(G = (V,E), R = (P, T )):

circuit = [ ];
for position, TEEreq ∈ R do

relaylist = { };
for v ∈ V do

if position ∈ v.positions then
if v.TEE or not TEEreq

// Security Policy
Extension

then
add v to relaylist;

end
end

end
totalBW =

∑
∀r∈relaylist r.bandwidth;

select relay r with probability r.bandwidth
totalBW ;

add relay to circuit;
end
return circuit

end
Algorithm 1: Bandwidth weighted relay selection for
circuits. G = (V,E) is the graph representing the Tor
network and R represents the configuration for the cir-
cuit, position, which contains the relay types (default
is Entry, Middle, Exit), and security policy of TEE
requirements for the circuit, TEEreq. v.positions is
the individual relay’s circuit position capabilities, and
v.TEE is its TEE status.

describes what TEE-based relays must be present (and
how they must be arranged) within a circuit to provide
protection. Our mapping from Table 1 prescribes five
policies: {∅}, {Entry}, {Exit}, {Entry,Exit}, and
{Entry,Middle, Exit}. For non-policy mode, a security
policy is therefore empty. We evaluate the performance,
security, and privacy consequences of enforcing the poli-
cies in realistic deployments in the following sections.

5.2. Extended Relay Selection Algorithm

Our extended relay selection algorithm adapts the
relay selection algorithm currently used by Tor to enable
clients to find policy-compliant circuits. In the base algo-
rithm [41], relays are weighted solely by their available
bandwidth when being selected for use in circuits. In
our extended algorithm, client select circuits in one of
two ways. In non-policy mode, the algorithm simply falls
back to the base algorithm. However, in policy mode,
it additionally considers both the client’s security policy
and the availability of TEE-based relays in the network
(published by the directory authorities in the directory
consensus document). An overview of the algorithm is
shown in Algorithm 1. It works by iteratively searching
the set of all relays to identify candidate TEE-based relays
to use at each position in the circuit being constructed.
Relays are similarly weighted by their available bandwidth
during selection (line 14).

5.3. Deployment Scenarios

The availability of TEE-based relays in the Tor
network (and their arrangement within a given cir-
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Figure 2: Pipeline of events for modeling partial deployments of TEEs in ParTEETor. A Tor network model is
generated using relay data from the directory consensus. Relays are probabilistically assigned to be TEE-based for
each deployment scenarios. Using Tor’s relay selection algorithm with an additional parameter for TEE security policy,
circuits are generated for analysis of their security and performance properties.

cuit) directly impacts user security, performance, and
privacy. To understand the efficacy of partial deploy-
ments, we introduce the notion of deployment scenar-
ios. A deployment scenario describes a strategy for
how relay operators could realistically begin upgrad-
ing their relays to run TEE-based hardware and soft-
ware. We introduce four deployment scenarios that
broadly capture such strategies: Random, Bandwidth
Weighted, Inverse Bandwidth Weighted, and
Circuit-Position Weighted. The first three al-
low a relay operator to decide which relays to upgrade
by assigning a probability of being chosen for upgrade
to each relay (either randomly or based on general relay
characteristics like available bandwidth). The last allows
a relay operator to more intelligently select relays for up-
grade by assigning select probabilities to relays occupying
distinct circuit positions.

Random Deployment. Random deployment weights w
for each relay uniformly to represent a fully randomized
selection. Explicitly, w = 1/n where n is the number of
relays in the network. No relay-specific characteristics are
taken into account.

Bandwidth Weighted Deployment. Bandwidth
Weighted deployment assigns weight w based on its
bandwidth. This weight remains fixed. This approach
is much like, and motivated by, the relay selection of
Tor. Relays with higher bandwidth are more likely to
be chosen for circuits because they can withstand more
traffic. Considering this, these relay operators have more
incentive to adopt TEEs. We consider this approach a
best case scenario, in that requiring TEE-based relays
will likely increase a user’s performance.

Inverse Bandwidth Weighted Deployment. Inverse
Bandwidth Weighted deployment assigns weight w
based on the inverse of a relay’s bandwidth. This weight
remains fixed. This approach is the opposite of the
Bandwidth Weighted deployment. Our motivation
for this deployment is to understand the worst case sce-
nario in terms of performance when requiring TEE-based
relays, as now all of the relays with lesser-bandwidth will

have a higher likelihood of being assigned to be TEE-
based.

Circuit-Position Weighted Deployment.
Circuit-Position Weighted deployment consists
of four deployment distributions: Entry, Exit, Entry-
Exit, and Entry-Middle-Exit. Each distribution selects
relays specifically with respect to their circuit position
capabilities. Therefore, each deployment is dependent
on three weights: we = TEE-based entry relays, wm

= TEE-based middle relays, and wx = TEE-based exit
relays. Each of these weights represent the percentage of
which are TEE-based, with respect to the total number
of relays of that type.

In terms of the capabilities of relays with respect to
their position in a circuit, every relay in the network
is middle-capable. All entry relays can be in both the
entry and middle positions of a circuit, and all exit relays
can be in middle and exit positions. Additionally, some
relays are both entry and exit-capable. Therefore, when
considering these weights, under distributions Entry-Exit,
and Entry-Middle-Exit, selection of relays may overlap.
For example, selecting 10% of entry relays to be TEE-
based, then selecting 10% of exit relays to be TEE-based
could result in actually 15% of entry relays being TEE-
based because half of the exit relays chosen could also be
entry-capable.

As each distribution assigns TEE-based relays accord-
ing to their circuit position capabilities, weight assign-
ments are dependent on the specific distribution:

• Entry: only vary the entry-capable relays, we

• Exit: only vary the exit-capable relays, wx

• Entry-Exit: vary the entry-capable relays, we, and
the exit-capable relays, wx

• Entry-Middle-Exit: vary all relays, we, wm, wx

These deployment distributions provide insight into
the impact each type of relay has on the network. They
may be useful in assessing the trade-offs between re-
lay cost and expected security/performance improvement
(e.g., deciding to upgrade entry relays first, as they provide
significant bandwidth to the network).



6. Evaluation

We evaluate ParTEETor via simulation of the real
Tor network. The experiments here seek to answer the
following questions: (1) How many circuits benefit from
the addition of TEEs under the existing relay selection
algorithm? (2) How much congestion is present in circuits
when enforcing TEE requirements under partial deploy-
ments? (3) What is the reduction in availability of circuits
when enforcing TEE requirements under partial deploy-
ments? We begin by briefly introducing the simulation
framework and experimental evaluation.

Simulation Framework. The ParTEETor simulation
models its behavior under different partial deployments
of TEEs in the Tor network (Figure 2). We model the
network as a graph [20], where each relay uses data
from the advertised Tor network (i.e., IP address, expected
bandwidth) as well as a TEE status representing whether
the node has a TEE or not. Under each deployment sce-
nario, we probabilistically assign relays to be TEE-based.
For non-policy mode, we apply the existing Tor relay
selection algorithm to simulate the behavior of selecting
relays for circuits. We extend the algorithm by including
an additional parameter for the security policy of the
circuits for policy mode. We then generate circuits for
two sets of experiments.

6.1. Experimental Setup

Our ParTEETor simulator is written in Python, using
the networkx library to model relations between relay
nodes. Simulations were performed on a Mac M1 CPU
with 16 GB of ram and 3.2 GHz max clock speed. We use
a directory consensus document published on February 26,
2023 [22] to generate our graph. In total, there are 6356
nodes, with 3179 having entry capability, and 1668 having
exit capability. 849 nodes overlap in the categories, being
both entry- and exit-capable. We run our extended relay
selection algorithm to generate 1000 potential circuits per
trial for each security policy. We run each trial 10 times
and take the mean to normalize our results.

For Random, Bandwidth Weighted, and
Inverse Bandwidth Weighted deployments, we
denote p as the percentage of total TEE-based relays
in the network. We evaluate p for the range from 1%
to 100%. Depending on the specific deployment, the
distribution of TEEs will vary. Recall that w is the
probability a relay will be TEE-based and is specific to
each deployment (see Section 5.3).

As Circuit-Position Weighted deployment
specifically targets relays with respect to their circuit
position capabilities, p is not an experimental parameter.
Instead, weights we, wm, and wx are iterated through
as experimental parameters for each TEE distribution of
this deployment. When a weight is a variable in the
deployment, we evaluate it over a range from 1% to 100%.

Evaluation Metrics. Our security metric is defined as the
number of circuits generated that satisfy each security
policy, when no policy is provided. This reflects the
security implications of ParTEETor in non-policy mode,
where TEE-based relays are present in the network and
the existing relay selection algorithm is not extended.

Our performance metric is defined as the expected
median bandwidth of circuits generated with a secu-
rity policy enforced. This reflects ParTEETor in policy
mode, where TEE-based circuit requirements are enforced
through the extended relay selection algorithm. We evalu-
ate performance in terms of expected bandwidth, as this is
a standard metric for performance in the Tor network [33],
[40]. Additionally, the cost of requiring TEE-based relays
in circuits is increased congestion, which we can study
via the expected bandwidth. To compute the expected
bandwidth of a circuit, we consult the directory consensus
document for expected bandwidth measurements of all
relays, as measured by the bandwidth directory authorities.
Next, we divide each relay’s expected bandwidth by the
number of circuits it is a part of. The expected bandwidth
of a circuit is then the minimum bandwidth of all relays
in the circuit.

We do not consider latency in our performance evalu-
ation, as it is not a factor in the relay selection algorithm.
Due to the minimal delays (3.9%) incurred by TEEs
in end-to-end performance of Tor [25], our simulation
assumes zero overhead of TEEs.

Our privacy metric is defined as the number of
unique circuits that are possible under security policies
when there is a limited TEE percentage. This reflects
ParTEETor in policy mode and presents the reduction
in space of circuits, as specifying a policy reduces the size
of the network to TEE-based relays.

6.2. Security of ParTEETor in Non-Policy Mode

In order to understand the security implications of
ParTEETor in non-policy mode, we investigate what
TEE coverage circuits can achieve without a security pol-
icy being enforced. Results for Random, Bandwidth
Weighted, and Inverse Bandwidth Weighted
deployments are found in Figure 3. We iterate over the
total number of relays in the network, p, and quantify
the number of circuits complying to each security policy.
These results analyze circuits generated for all security
policies. Results for the Position-Weighted deploy-
ment are found in Figure 4. We iterate over weights
we, wm, and wx, depending on the TEE distribution,
and quantify the number of circuits complying to the
distribution. These results only analyze circuits generated
with the security policy synonymous with the deployment
distribution. For example, the Entry-Exit distribution’s
security results only present circuits that had both a TEE-
based entry relay and TEE-based exit relay.

Random. Security results for Random deployment are
in Figure 3a. These results show what security can be
achieved with no strategic placement of TEEs in the
network.

Statistically speaking, as w is uniform across all re-
lays, the probability of a circuit containing a TEE-based
relay in a given position is equivalent to p. This is seen in
the fact the percentage of TEE-based entry relay circuits
is almost identical to the percentage of TEE-based exit
relay circuits, which are both almost identical to p.

As expected, circuits with multiple TEE-based relays
are less prevalent. Statistically, the probability both a TEE-
based entry and TEE-based exit relay are in a circuit is
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(b) Bandwidth Weighted
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(c) Inverse Bandwidth Weighted

Figure 3: TEE presence in circuits when no TEE security policy is specified when incrementing the percentage of TEEs
present in the network, p. Results are the mean over 10 trials of 1000 circuits each.
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(a) Entry Policy: we = variable; Exit Policy: wx =
variable
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(b) Entry-Exit Policy: we = variable, wx =
variable
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(c) Entry-Middle-Exit Policy: we = variable,
wm = 25%, wx = variable
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(d) Legend for Entry-Exit and Entry-Middle-Exit dis-
tributions
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(e) Entry-Middle-Exit Policy: we = variable,
wm = 50%, wx = variable
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(f) Entry-Middle-Exit Policy: we = variable,
wm = 75%, wx = variable

Figure 4: TEE presence in circuits when no TEE security policy is specified for the Circuit-Position Weighted
deployment. Each policy increments weights we, wm, and wx as noted in the figures. Results are the mean over 10
trials of 1000 circuits each.

p2. Then, the probability of each position in the circuit
containing a TEE-based relay is p3. Under this deploy-
ment, for circuits to contain a TEE-based relay in every
position, at least an 80% TEE presence is required.

Bandwidth Weighted. Results for Bandwidth
Weighted deployment are shown in Figure 3b. This
deployment provides the highest number of circuits with
TEE-based relays under all policies in comparison to
all deployments. There is an increased likelihood of a
TEE-based relay being present because of Tor’s relay
selection algorithm, as the relays with more bandwidth
are selected to be TEE-based.

At only 23% TEE presence, 50% of circuits have a
TEE-based entry relay, protecting users from two classes
of attacks. At 28% TEE presence, 50% of circuits have

a TEE-based exit relay, also protecting users from two
classes of attacks. More significantly, though, at 44%
TEE presence, more than 50% of circuits have a TEE-
based relay in every position, providing protection from
all classes of attacks.

Inverse Bandwidth Weighted. The Inverse
Bandwidth Weighted deployment is shown in
Figure 3c. This deployment has the lowest number of
circuits with TEE-based relays under all policies in
comparison to all the deployments. This is expected,
once again, because of Tor’s relay selection algorithm.
The likelihood of receiving a circuit with a TEE-based
relay is significantly reduced in this deployment because
of the minimal bandwidth they offer the network.

With this deployment, in order for 50% of circuits to
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(a) Random Relay
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(b) Bandwidth Weighted
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(c) Inverse Bandwidth Weighted

Figure 5: The median percentile bandwidth of circuits generated with each security policy when incrementing the
percentage of TEEs present in the network, p. Results are the mean over 10 trials of 1000 circuits each.

0 20 40 60 80 100
Percentage of TEE Relays

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

50
th

 P
er

ce
nt

ile
 B

an
dw

id
th

 (K
B/

s)

baseline
entry
exit

(a) Entry Policy: we = variable; Exit Policy: wx =
variable
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(b) Entry-Exit Policy: we = variable, wx =
variable
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(c) Entry-Middle-Exit Policy: we = variable,
wm = 25%, wx = variable
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(d) Legend for Entry-Exit and Entry-Middle-Exit dis-
tributions
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(e) Entry-Middle-Exit Policy: we = variable,
wm = 50%, wx = variable
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(f) Entry-Middle-Exit Policy: we = variable,
wm = 75%, wx = variable

Figure 6: The median percentile bandwidth of circuits generated for the Circuit-Position Weighted deploy-
ment, with each policy incrementing weights we, wm, and wx as noted in the figures. Results are the mean over 10
trials of 1000 circuits each.

have at least one TEE-based relay, a TEE penetration of
greater than 80% is required. For comparison, this is the
same deployment percentage required for more than 50%
of circuits to have all TEE-based relays (protection from
every class of attack) in the Random deployment.

Circuit-Position Weighted. The security results of
Circuit-Position Weighted deployment provide
insight into which types of relays adopting TEEs can most
improve security. Results for Entry distribution and Exit
distribution are overlaid in Figure 4a. With this, the Entry
distribution is iterating over we, while the Exit distribution
is iterating over wx. The results of these distributions are
defined in the same manner as Random deployment. For
Entry, the probability of a circuit containing a TEE-based
entry relay is equivalent to we. For Exit, the probability of
a circuit containing a TEE-based exit relay is equivalent to
wx. With this, both deployment distributions grow linearly

as we and wx increase.

Entry-Exit (Figure 4b) and Entry-Middle-Exit (Fig-
ure 4c, Figure 4e, and Figure 4f) continue with steady
growth. Interestingly, at low values of we but higher
values of wx, we see more circuits with TEE-based relays
than one might expect. For example, with we = 1%
and wx = 70% in the Entry-Exit distribution, 10.9% of
circuits still had both a TEE-based entry relay and TEE-
based exit relay. With the Entry-Middle-Exit distribution,
adding in wm = 50%, 29.5% of circuits are entirely
TEE-based. These results are because of the multiple
capabilities relays may have. As all relays are middle-
capable, and many exits are entry-capable, increasing wm

and wx inherently increases we in some manner.

These results also show the increase of TEE-based
entry relays results in more circuits in comparison to the
increase of TEE exit relays. For example, with we = 60%



and wx = 30% in the Entry-Exit distribution, 33.8% of
circuits have a TEE-based entry relay and TEE-based exit
relay. With these values reversed, only 26.6% of circuits
have a TEE-based entry relay and TEE-based exit relay.

Takeaways. Overall, ParTEETor in non-policy mode
provides users an immediate improvement to their security
in terms of protection from known classes of attacks.
While any TEE-based relay will benefit the network,
higher bandwidth relays have the most influence because
of how often they are used. Additionally, relays that are
capable of being used in all positions of a circuit have a
substantial impact, as they are not forced to adhere to one,
or even two positions. Therefore, relay operators with high
bandwidth, or that allow for multiple uses are capable of
significantly improving the security of Tor by adopting
TEEs.

6.3. Performance of ParTEETor in Policy Mode

Recall that ParTEETor in policy mode enforces
security policies by extending the relay selection algo-
rithm. This mode guarantees a user’s security and is ideal
for users concerned about protection from each class of
attack. However, a potential consequence of this mode
is increased congestion. Under limited deployments of
TEEs, congestion may be more prevalent for users, as
circuits will be forced to use the limited available TEE-
based relays. To quantify this performance cost, we gener-
ate circuits with required TEE security policies. We then
calculate median expected bandwidth of all the circuits.

Results for Random, Bandwidth Weighted, and
Inverse Bandwidth Weighted deployments are
found in Figure 5. We iterate over the total number
of relays in the network, p. These results analyze cir-
cuits generated for all security policies. Results for the
Position-Weighted deployment are found in Fig-
ure 6. We iterate over weights we, wm, and wx, depending
on the TEE distribution. Once again, these results only
analyze circuits generated with the security policy syn-
onymous with the deployment distribution. In each figure,
‘baseline’ represents the expected performance of users
in Tor today, with no TEE requirements on circuits. To
normalize this value, we take the average across all the
deployments, getting a final baseline expected bandwidth
of 8347.3 KB/s.

Random. Performance results for this deployment can be
found in Figure 5a. We see a steep increase immediately
before tapering off with TEE-based entry security policy.

Notably, at only 20% TEEs in the network, circuits
with a TEE-based entry relay requirement have a band-
width of 7008.3 KB/s, a decrease of only 16% from the
baseline. Considering more than half of the network is
entry-capable, and entry relays have a minimum band-
width they must meet, increasing p inherently increases
the number of entry relays at a faster rate than exit relays.
Congestion subsides quickly for TEE-based entry circuits,
allowing performance of users to be only minimally re-
duced.

In comparison, the TEE-based exit security policy has
a more steady increase in performance, though bandwidths
are substantially lower. This is because there are fewer exit
relays in the network in comparison to entry, resulting

in more congestion. At 20% TEEs, circuits with a TEE-
based exit relay have a 50.8% decrease in performance
from the baseline. We see with the final two security
policies performance continues to degrade as more TEE-
based relays are required in the circuits, as to be expected.
All circuits are using the same few TEE-based relays,
resulting in more congestion.

Bandwidth Weighted. The results for Bandwidth
Weighted deployment are shown in Figure 5b. This
deployment shows the highest performance in comparison
to other deployments. All security policies have a dramatic
increase in performance from 1% TEE deployment until
slowing around 25% TEE deployment. By requiring TEE-
based relays in a circuit, this deployment provides the
highest performance because users are biased towards the
highest bandwidth relays, as these relays are TEE-based.

With only 10% TEEs in the network, TEE-based entry
circuits nearly meet the baseline bandwidth with only a
3% decrease. At 44% TEEs, all security policies have a
bandwidth meeting and/or exceeding the baseline. With
these results, users do not need to sacrifice their per-
formance for increased security by requiring TEE-based
relays in circuits.

The most compelling result from this deployment,
though, is after 10% TEEs in the network, TEE-based
entry circuits surpass the baseline performance briefly, be-
fore slowing to baseline again around 70% TEEs. Due to
all the TEEs being concentrated on the highest-bandwidth
relays, the relay selection algorithm is even more biased
towards high performance, which we see at these stages
(we evaluate the privacy implications of this in the next
section).

Inverse Bandwidth Weighted. We see a significant
reduction in performance with Inverse Bandwidth
Weighted deployment, seen in Figure 5c. Circuits with
the TEE-based entry security policy perform the best, as
with all other deployments. This is, once again, due to
the substantial number of entry relays in the network.
For TEE-based entry circuits to have at least half the
bandwidth that is achieved by the baseline, 43% TEEs
is required. For comparison, at this same TEE percent-
age, full TEE-based circuits in the Random deployment
exceed this bandwidth. More than a 70% TEE presence
is required for full TEE circuits to have this bandwidth.

Ultimately, this deployment scenario yields the most
reduction in bandwidth compared to other deployments.
This is to be expected, based on Tor’s relay selection
algorithm. As relays in this deployment have the least
bandwidth in the network, requiring TEE-based relays, in
turn, results in lower bandwidth.

Circuit-Position Weighted. The Circuit-Position
Weighted deployment provides insight into which types
of relays are most critical to performance.

The results for Entry distribution and Exit distribution
are overlaid in Figure 6a. With this, the Entry distribution
iterates over we, while the Exit distribution iterates over
wx. Once again, these distributions reflect the results of
the Random deployment. With 20% TEE-based entry
relays (we), circuits have a median bandwidth of 6941.7
KB/s, a 16.8% decrease from baseline. This reflects the
fact that more than half of the relays in the network



are entry-capable, meaning congestion begins to taper off
around 20% TEEs. For the same decrease in performance,
54% of exit relays need to be TEE-based (wx). A higher
percentage of exit relays is required in comparison to entry
relays because there are fewer exit relays in the network.
Congestion is therefore present at higher values of TEEs,
as more circuits are vying for fewer existing TEE-based
relays.

For the Entry-Exit distribution, shown in Figure 6b,
one might expect to see for low we values similar re-
sults as in the previous two graphs. However, this is not
the case, as we see when increasing the exit relays the
bandwidth improves significantly, even with we at only
1%. This is because of the overlap in relays that are both
entry and exit-capable. We see this with high wx values,
the network naturally load balances itself by using the
excess TEE-based exit relays as entry relays. This same
phenomenon is seen in the Entry-Middle-Exit distributions
(Figure 6c, Figure 6e, Figure 6f). Despite the low values
of we, as middle and exit relays gradually transition to
adopting TEEs, the bandwidth of circuits increase because
of the multi-capable relays in the network.

Takeaways. While one might expect to sacrifice perfor-
mance to guarantee security with ParTEETor in policy
mode, our performance evaluation shows this is not always
the case. When requiring TEE-based relays in circuits,
congestion persists only until TEE percentages reach a
critical mass point. High bandwidth relays contribute most
to reaching this point at sparse TEE deployments, as they
can withstand the demand of circuits requiring TEE-based
relays. Relays that can function in multiple positions of a
circuit also impact performance positively. As they can be
used in various positions, they can help meet the demand
of circuits requiring TEE-based relays when a specific
type of relay is limited. With relay operators that provide
high bandwidth or that allow for multiple uses adopting
TEEs, the network can meet demands without significantly
reducing user performance.

6.4. Privacy of ParTEETor in Policy Mode

By specifying a security policy, the size of network is
decreased, as circuits are limited to only containing TEE-
based relays. Consequently, the space of available (policy-
compliant) circuits is also reduced. When the space of
possible circuits is reduced, the anonymity of users is
impacted, as the predictability of circuits will be higher.
Therefore, it is important to quantify the reduction in
available circuits (and associated privacy) under specific
TEE deployments and security policies. Through combi-
natorics, we derive the number of unique circuits that can
be generated in ParTEETor in policy mode for each
security policy, in partial TEE deployments. We juxtapose
these results against historical Tor data to justify why even
the reduced space of available (TEE-based) circuits still
provides reasonable privacy guarantees.

Recall that circuit position capabilities of relays are
not exclusive. All relays are middle-capable, regardless of
their entry/exit capabilities. Some relays are both entry
and exit-capable. We determine the breakdown of the
number of relays with specific circuit position capabili-
ties: Middle-capable relays: mc = 6356, Entry-capable

relays: ec = 3179, Exit-capable relays: xc = 1668. We
denote p as the total percentage of TEE-based relays
in the network, representing our deployment scenario.
We consider deployments of 1%, 5%, 10%, 25%, 50%,
and 75%. For each, we consider a uniform deployment
amongst each relay capability. The formulas derived are
found in Table 2, along with our results. In baseline Tor,
more than 33 billion unique circuits are possible.

Our results show that requiring only one relay in
a circuit to be TEE-based, whether it be entry or exit,
provides the least reduction in availability, as expected–
these TEE security policies place the least restrictions
on possible circuits, while also mitigating two classes of
attacks. With a 1% deployment, requiring a TEE-based
entry relay results in only 1% of the possible circuits
in comparison to no TEE requirement; however, this still
results in 336 million possible circuits. For comparison,
this space of circuits is equivalent to that of Tor in May
of 2010 [35]. With a 25% deployment of TEEs, the space
of circuits with both a TEE-based entry relay and TEE-
based exit relay is two billion, which is equivalent to Tor
in March of 2012. At a 50% deployment of TEEs, the
space of full TEE circuits is equivalent to Tor in July of
2013, with four billion circuits possible.

Takeaways. Ultimately, our privacy results inform users
on the trade-offs between security and privacy. By spec-
ifying a security policy, users are guaranteed protection
from known classes of attacks, and receive reasonable
privacy guarantees. While the space of circuits is signif-
icantly reduced, it can still meet or exceed the expected
privacy of historical versions of Tor used by hundreds
of thousands of people. Increased TEE penetration will
gradually resolve this issue.

7. Discussion & Related Work

Limitations. While we demonstrate that TEEs are suc-
cessful in defending against a broad class of attacks
on Tor, we recognize their limitations: attacks against
TEEs [15], [27], [30], [31] and defenses [1], [16], [38]
have been published. Furthermore, TEEs can only re-
duce our adversary to a network level. The visibility that
network administrators and ISPs have allows for more
analysis on IP packets, which a local network adversary
may not be able to analyze.

Relay Overloading. In this work, we do not consider
relays reaching their bandwidth capacity. Consider the
Bandwidth-Weighted deployment, for example. In
this deployment, the highest performing relays are the
most likely to be TEE-based. Due to Tor’s relay selection
algorithm, these relays are also most commonly used in
circuits. This means that in this deployment, TEE-based
relays will likely reach their bandwidth capacity because
of their constant use. We leave to future work to model
capacity limits of relays to better understand the impact
on performance of users.

Implementing ParTEETor in Tor. We do not implement
ParTEETor in the actual Tor network. We acknowledge
SGX-Tor’s [25] technical challenges of implementing the
Tor protocol in a TEE, which have been identified and
addressed. For this reason, implementing ParTEETor



TEE Requirement Number of Circuits p = 1% p = 5% p = 10% p = 25% p = 50% p = 75%
None xc(ec − 1)(mc − 2) 3.36× 1010

Entry xc(pec − 1)(mc − 2) 3.36× 108 1.68× 109 3.36× 109 8.42× 109 1.68× 1010 2.52× 1010

Exit pxc(ec − 1)(mc − 2) 3.36× 108 1.68× 109 3.36× 109 8.42× 109 1.68× 1010 2.52× 1010

Entry, Exit pxc(pec − 1)(mc − 2) 3.36× 106 8.42× 107 3.36× 108 2.10× 109 8.42× 109 1.89× 1010

Entry, Middle, Exit pxc(pec − 1)(pmc − 2) 3.36× 104 4.21× 106 3.36× 107 5.26× 108 4.21× 109 1.42× 1010

TABLE 2: Number of unique circuits possible based on the ratio of TEE relays in the network and the security policy.
p represents the percentage of TEE relays in the network and ec, mc, and xc represent entry, middle, and exit capable
relays, respectively.

would largely reflect SGX-Tor, with only small modifi-
cations to the relay selection algorithm to support our
security policies.

TEE-Augmented Tor. Other works have explored the use
of TEEs for purposes largely unrelated to the attacks we
evaluate here. For example, Panoply [39] considers in a
case study implementing a directory authority within a
TEE. Shinde et al. integrate all Tor Directory Authority
protocol into their system in order to prevent adversaries
from manipulating the consensus of the network to al-
lows malicious relays to be accepted. Jain et al. propose
OpenSGX [19], a system that emulates SGX at an in-
struction level. In their evaluation, they are motivated in
preventing attacks that exploit the private keys of directory
authorities and exit nodes, in which they integrate the
cryptographic functions of the Tor protocol into their
system. ConsenSGX [37], considers the deployment of
TEEs on directory cache relays for scalability problems
in Tor. Clients are able to request only partial views of
the network from TEE-enabled directory caches so they
no longer need to store the entire consensus document.
Note that none of these works consider the placement of
the entire relay protocol within a TEE.

8. Conclusion

In this paper we have demonstrated that partial deploy-
ments of TEE-based relays (and with small changes to the
Tor operation) can substantially improve the resilience of
the network to attacks. Moreover, our analysis shows that
such security gains grow with the increasing penetration
of TEEs. Thus, we argue that integration of TEEs is not
only an obvious win, but necessary to Tor’s future.
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A. Attack Figures

In this appendix, we provide figures depicting each
class of attack analyzed in section 4.
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Figure 9: Fingerprinting Attack Scenario
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Figure 11: Bandwidth Inflation Scenario
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